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Indexing Distributions of Data: 

Preservice Teachers’ Notions of Representativeness 

 

Theoretical Perspective 

Distribution is the statistical term for the arrangement of observations along a 

scale of measurement (Hardyck & Petrinovich, 1969). If the data from an assortment of 

observations are plotted using a common scale of measurement, the result is a 

representation of the group data. Repeated observations will result in a set of differently 

shaped plots, each of which varies in a number of ‘dimensions’ – most notably deviations 

occur in terms of center and in variation. A mathematical treatment of distribution entails 

the use of summary characteristics of the distribution. Four summary characteristics are 

generally used to index distributions of data: measures of central tendency, variability, 

skew and kurtosis. If the entire set of characteristics is taken into consideration, the 

distribution can be described exactly.   

In generating descriptions of distributions, the notion of representativeness arises. 

Representativeness is an important notion in statistics because the ability to use a 

summary statistic to describe a data set removes the necessity of naming each individual 

data value. The choice of representative value varies depending on the shape of a 

distribution. The mean and other measures of central tendency are representative when 
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data sets are normal and non-skewed; however the mean becomes less representative as 

the distribution deviates from normal. In such situations, the sole use of measures of 

central tendency is inadequate to index a distribution, and supplemental indices such as 

variability may be more appropriate.  

In recent years the focus of statistics education has shifted from examining 

individual summary statistics (Friel, 1998; Hardiman, Well & Pollatsek, 1984; Mevarech, 

1983; Pollatsek, Lima & Well, 1981; Zawojewski, 1988) and moved to more holistic 

examinations of distributions of data and the measures that index these distributions 

(Author & Middleton, 2001; McClain, Cobb & Gravemeijer, 1999, 2000; Mokros & 

Russell, 1995). Researchers have examined elementary and middle school children’s 

construction of representativeness (Hancock, Kaput & Goldsmith, 1992; Author & 

Middleton, 2001; Mokros & Russell, 1995). In an investigation of fourth through eighth 

graders’ notions of representativeness (Mokros & Russell, 1995), participants’ 

approaches were grouped into two main categories, those that embody the notion of 

representativeness and those that do not embody the notion of representativeness. Two 

approaches did not recognize the notion of representativeness; these were average as 

mode and average as an algorithmic procedure.  Three approaches embodied the idea of 

representativeness, these were average as ‘what is reasonable’, average as midpoint, and 

average as a mathematical point of balance.  

A study of elementary and middle grade students understanding of distribution 

(Author & Middleton, 2001) found that students utilized a number of approaches when 

constructing representative values. The repertoire and sophistication of strategies 

developed as a result of exposure to a wide variety of distributional shapes. The initial 
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strategy used by participants to construct representative values was the use of the mode. 

Coordination of variation and center through the construction of intervals of data was an 

approach developed by children over the course of the teaching experiment. The ultimate 

strategy employed was use of the mean in combination with other measures of central 

tendency or variability.  

Difficulties recognizing instances in which the mean can be used as a 

representative measure were found by Hancock, Kaput & Goldsmith (1992) in a study of 

fifth through eighth graders. This was indicated by the inability of any students to use the 

mean to compare two groups of unequal size. A similar lack of understanding of the 

mean as a representative measure was found in a study of 263 preservice teachers 

(Author & O’Loughlin, 2002) wherein, when asked to compare two sets of data, only 

57% of respondents made an appropriate comparison of means. Hancock et al. (1992) 

found that despite instruction focusing on looking at trends in the data and the 

introduction of appropriate vocabulary, students often gave more attention to individual 

cases than was merited. The majority of students had difficulty looking at the generalized 

group and frequently referred to the particulars of a specific case.  

The increasing use of computer tools to aid in the construction and analysis of 

data is visible throughout the literature. The use of computer tools provides several 

advantages: they provide immediate feedback when students make changes to their 

representations, they facilitate the construction of different representations of data, they 

help students in the organization of their data, and they function as a calculator carrying 

out complex operations, hence freeing students to reason about the data.  

Studies investigating the use of technology in promoting children’s understanding 
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of distribution have found that technological tools can be effective in supporting the 

development of statistical reasoning relating to distributions of data. The Reasoning 

Under Uncertain (RUU) curriculum (Rosebery & Rubin, 1989) utilizes interactive 

graphing software, ELASTIC, to teach statistical concepts through the display of 

histograms, bar charts, box plots, and scatter plots. ELASTIC includes three tools 

designed to support and develop students’ statistical reasoning. One of these tools, the 

stretchy histogram, allows students to change the distribution of a histogram and watch as 

the mean, median and quartiles are updated. Another tool, the sampler, is a simulated 

laboratory where students take repeated samples and compare the shapes of distributions; 

and the third tool, shifty lines, is an interactive scatter plot that fits lines through varying 

data points. Through the use of these flexible tools, the curriculum encourages children to 

investigate statistical questions, and the software supports exploration of these statistical 

concepts.  

In an investigation of the role of discourse in the analysis of data, McClain, 

McGatha & Hodge (2000) used computer mini tools to support eighth-grade students in 

developing their data-based arguments. The tools provided a number of approaches to 

structure and analyze data and representations arising from tool-use were used as 

evidence to support and substantiate student arguments. Similar tools were used by 

McClain, Cobb & Gravemeijer (2000) in a twelve-week teaching experiment in a 

seventh-grade classroom. The tools were considered ‘an integral aspect of statistical 

reasoning rather than as technological add-ons’ (p. 174). Both tools used in the study 

supported the conceptualization of data sets as entities (Hancock, Kaput & Goldsmith, 

1992), one tool facilitated students in ordering, partitioning and organizing distribution of 
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data, while the second tool supported the structuring of data into groups and intervals. 

The researchers found that as students were using the tools to make data based arguments 

related to distributions of data, deep understandings of statistical ideas were being 

constructed. 

Other researchers have examined the prevalence of computers in college level 

statistics courses, stating that they assist and enhance instruction (Denby & Pregibon, 

1987), hold student attention and act as a motivational tool (Black, 1988), facilitate 

students in becoming active participants in courses rather than mere spectators (Black, 

1988), and can be utilized for data description, multivariate statistics (Bajgier & 

Atkinson, 1989), regression, and sampling distributions (Gordon & Gordon, 1989). Many 

of these topics, such as multivariate statistics, are next to impossible to introduce with 

real data sets without technological assistance. 

What is absent from the research base is a coherent model of how preservice 

teachers conceptualize distributions of data and the measures that represent them. Little is 

known about how preservice teachers’ knowledge of distributions impacts upon 

instruction. Studies of preservice teacher content knowledge suggests that good 

mathematical content knowledge results in the incorporation of worthwhile and 

meaningful classroom mathematical experiences through the increased capacity to pose 

questions, select tasks and emphasize the richness and meaningfulness of mathematics. 

Several studies have, however, identified gaps and misconceptions in preservice teacher 

statistical content knowledge. Studies have shown that preservice teachers’ understanding 

of the mean is limited to computational knowledge with little associated conceptual 

understanding (Author & O’Loughlin, 2002) and also that computational algorithms are 
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most frequently used in representations when solving mean-related problems (Gfeller, 

Niess, & Lederman, 1999). An investigation of preservice elementary teachers’ 

classroom practices when teaching statistical investigation (Heaton & Mickelson, 2002) 

highlighted several difficulties integrating statistical activities. In particular, they 

identified problems in developing substantive research questions, an overemphasis on 

technical components of graphing, and a lack of awareness of the importance of relating 

the data back to the investigation questions thus leading to a superficial exploration of the 

data. These difficulties related to understanding and teaching relatively simple statistical 

concepts support Shulman’s (1986) argument for the need to provide experiences that 

allow teachers to acquire statistical content and pedagogical knowledge.  

This exploratory study focused on uncovering the strategies employed by 

preservice teachers when constructing representative measures for a variety of 

distributions of data. Two specific research questions were addressed: 

1. What types of representative measures do preservice teachers construct to 

index distributions of data? 

2. Does the representational form of the data influence the nature and type of 

representative values constructed to index data? 

 

Method 

Participants 

Study participants were 283 preservice elementary teachers in their second year of 

a three-year Bachelor of Education Degree program. The mean age of the group was 19.8 

years old, with 14% male and 86% female. The preservice teachers had studied a 
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component of descriptive statistics at high school, which was focused on computing 

measures of central tendency and variability and constructing graphical representations. 

Study participants had also completed an undergraduate mathematics methods course, 

part of which focused on approaches to teaching data modeling to elementary children.  

In addition, they had completed two teaching practice placements at early and middle 

elementary grade levels. 

 

Instrumentation 

 The research instrument was designed to investigate the types of representative 

measures that preservice teachers considered appropriate to index distributions of data. 

The instrument consisted of five tasks designed to reveal participants’ strategies when 

constructing representative values for a variety of distributional shapes and 

representational forms. The distributional shapes of the data were varied to reflect 

bimodal, skewed, flat, and normal distributions. Each of the tasks presented a set of data 

and a problem situation wherein participants were asked to construct a representative 

value(s) that indexed the entire data set. Two of the tasks (tasks 1, 2) presented ‘raw’ data 

sets in which data were presented in an unordered and unorganized manner while three of 

the tasks (tasks 3, 4, 5) presented the data graphically on a line plot. The raw data sets, in 

tasks 1 and 2, consisted of identical data values as presented graphically in tasks 3 and 4, 

however individual data values were listed rather than presented graphically. The 

problem context was changed so as to prevent participants from recognizing the identical 

problem situations. This would allow examination of the effect of representational form 

on construction of representational index, while keeping distributional shape and size 
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constant. Figure 1 shows a graphically presented data set (task 3) and figure 2 shows the 

same data presented in a non-graphical context (task 1).  

 The participants were administered the tasks in a whole group setting and given 

one hour to complete them. All students had completed the tasks within 50 minutes. 

Participants were provided with calculators and asked to engage in a ‘written-think-

aloud’ protocol wherein they recorded the main justifications for engaging in specific 

mathematical practices, documented mathematical dilemmas they faced when engaging 

with tasks, and mentioned other aspects of their thinking that would facilitate the 

researcher in understanding the reasons for construction of specific representative values.  

 

 

Figure 1: A positively skewed distribution of data presented on a line plot. 

 

The following line plot describes the speeds of 64 drivers, over one week, ticketed by the police 

in the suburbs of a large city. These drivers were traveling through a 30 miles per hour speed 

zone. Generally, what was the speed of a driver who received a ticket? 
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Figure 2: A positively skewed distribution of data presented in ‘raw’ data form 

 

Are great discoveries generally made by people who are young and vigorous or by persons who 

are old and wise? Below is a tabulation of the ages at which scientists (Copernicus, Galileo, 

Newton, Franklin, Lavoisier, Lyell, Darwin, Maxwell, Planck, Einstein, Schröedinger etc.) made 

great discoveries.  

 

39, 73, 39, 41, 70, 42, 43, 43, 52, 43, 44, 41, 44, 45, 36, 45, 45, 41, 47, 48, 49, 50, 48, 48, 49, 36, 

37, 38, 46, 47, 38, 38, 39, 49, 49, 51, 51, 52, 52, 53, 55, 58, 47, 59, 59, 61, 62, 63, 40, 41, 63, 40, 

39, 40, 41, 47, 41, 55, 56, 72  

 

What approach would you use to answer the question: At what ages are great discoveries made? 

Please show your work. 
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Analysis of Data 

Responses to tasks were examined and codes constructed to describe the 

representative values constructed by participants. Task responses were analyzed from two 

perspectives: nature of representative value and adequacy of representative measure. The 

nature of representative values was ascertained for individual responses on each task, 

representative values were coded as characterizing measures of central tendency, 

variability or some combination of measures. The adequacy of the constructed 

representative value was then recorded for individual tasks by determining the extent to 

which the measure reflected the variability and density of scores. Hence, once identified, 

the representative measure was coded as poorly representative or highly representative. 

An index was considered highly representative when the respondent constructed a value 

that took into consideration the landmarks and trends in the data. Factors influencing 

participants’ selection of representative score were noted from written comments, 

inscriptions and other referents visible on the transcript. Final coding categories and 

respective frequencies are outlined in tables 1-5. 

 

 

Results 

The researcher and a member of the mathematics department examined the data sets 

prior to administration. A list of possible representative measures was constructed, codes 

assigned, and the degree of representativeness of the specific measures ascertained.  
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Question 1: What types of representative measures do preservice teachers construct to 

index distributions of data? 

Preservice teachers were asked to construct representative values for normal and 

skewed distributions of data. Individual measures of central tendency were not 

considered representative of the positively skewed distributions of data. The mode was 

not necessarily representative of the skewed distribution due to its position at the lower 

end of the distribution and hence its poor ability to represent data values at the upper end 

of the distribution. Similarly the mean was not considered very representative due to the 

degree of influence of the outliers present at the upper end of the data set. Many of the 

preservice teachers seemed unaware of these issues, with 60% choosing an individual 

measure of central tendency to index the distribution, thus resulting in a value that did not 

provide an accurate picture of the data set (see table 1). 17% of the students attempted to 

coordinate variability and central tendency through the use of a variety of different 

strategies, hence taking into consideration the patterns or landmarks in the distribution. 

These responses included those strategies that constructed intervals of data (code A2) and 

combinations of central tendency and variability (code C). The remainder of the 

responses utilized the range (11%), or other strategies (12%).  
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Table 1:  

Distribution (in percent) of types of representative values constructed for a positively skewed 

distribution of data presented on a line plot 

 
     

A. Measures of variability  26% 

 A1 Range 11%  

 A2 Interval 15%  

B. Measures of central tendency  60% 

 B1 Mean 27%  

 B2 Median 30%  

 B3 Mode 3%  

C. Combinations of variability and 

central tendency 

 2% 

D. Other  12% 

 

 

Responses were categorized into measures that were representative of the data set 

and measures that were poorly representative of the data set. An index was considered 

representative when the respondent examined the data set and attempted to choose a 

value that took into consideration the landmarks and trends in the data. Hence, the 

provision of appropriately placed intervals of data, the construction of adjusted mean or 

mode values, and median values were considered representative. Categorizations of 

responses in terms of degree of representativeness are presented in table 2. As can be 

seen for the positively skewed data sets, 24% of constructed measures were considered 

representative of the data set, 65% were considered poorly representative of the data set 

and 11% were indeterminable.   
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Table 2:  

Degree of representativeness of indices used to describe a variety of distributional shapes. 
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34 
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Bimodal  

Distributions 

 

 

67 

 

24 

 

4 

 

5 

 

 

Negatively skewed data sets were also indexed using a multiplicity of approaches. 

Similar to positively skewed data sets, individual measures of central tendency were 

considered poorly representative of negatively skewed distributions. The majority of the 

student-constructed representative values were measures of central tendency (64%) 

consisting predominantly of the mode, which represented 50% of the overall values (see 

table 3). In this particular distribution, the mode was situated at the upper extreme of the 

data set and was poorly representative. 27% of the students constructed an interval of 

data to index the distribution. These intervals represented an attempt to coordinate 

variability and center and were highly influenced by the mode (codes A1 and E). 7% of 

the responses attempted a visual balancing of the data set wherein the mode, range and 

clusters of data were all taken into account. Hence we can see awareness on the part of 

34% of the students of the specific features of the distribution that influence 
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representativeness and hence the corresponding construction of representative values (see 

table 2).  

 

Table 3:  

Distribution (in percent) of types of representative values constructed for a negatively skewed 

distribution of data presented on a line plot 

 
     

A. Measures of variability  25% 

 A1 Interval 25%  

B. Measures of central tendency  64% 

 B1 Mean 12%  

 B2 Median 1%  

 B3 Mode 51%  

C. Combinations of variability and central 

tendency 

 2% 

D. Visual Construction  7% 

E. Other    2% 

 

Measures of center were the predominant index utilized to represent the bimodal 

distribution and accounted for 66% of the responses, three quarters of which consisted of 

the mean (see table 4). Measures of variability accounted for 16% of the responses, the 

majority of which consisted of the construction of an interval of data within which a 

representative value would lie. One third of the intervals encompassed the first clump of 

data and the other two thirds encompassed the two major clumps of data. All intervals 

ignored the upper and lower data values, and hence represent attempts to summarize the 

data. 17% of the respondents presented an individual data value to represent the data set; 

analysis of the constructed values indicated that the values were not the result of an 

algorithm such as the mean or median, rather they represented an attempt at ‘eyeballing’ 

or visually balancing the data set. As the bimodal data set was symmetrical, the mean was 
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considered a representative value, as was the median, and a large proportion of the 

intervals. Participants were most successful in constructing representative values for 

bimodal distributions, with 67% succeeding in constructing a representative value. This 

large proportion is mainly due to consideration of the mean as a representative value. 

More difficult to determine however is whether those participants who constructed mean 

values did so as a result of reflection on appropriateness of the mean as a representative 

value or whether they would have calculated the mean irrespective of the distributional 

shape. Analysis of approaches used by participants across tasks revealed that 59% of 

those who used the mean in the bimodal distribution had not constructed a mean in the 

skewed distributions and thus implies that they did so based on analysis of the 

distributional shape. Interestingly, 5% of the respondents constructed an unrepresentative 

value, deemed unrepresentative as it fell outside the range of the data values. 

 

Table 4:  

Distribution (in percent) of types of representative values constructed for a bimodal symmetrical 

distribution of data presented on a line plot 

 
     

A. Measures of variability  16% 

 A1 Range 12%  

 A2 Interval 4%  

B. Measures of central tendency  66% 

 B1 Mean 48%  

 B2 Median 3%  

 B3 Mode 11%  

 B4 Median of median 4%  

C. Combinations of variability and central 

tendency 

 0% 

D. Visual Construction  17% 

E. Other  1% 
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A chi-square analysis indicated that ability to construct representative values and 

distributional shape are not independent  (2 
(6) = 889.771, p < .000). Examination of 

residuals indicates that the ability to construct representative values for bimodal 

distributions exceeded expected values, and correspondingly fewer than expected 

participants constructed poorly representative values for symmetrical distributions. 

 

Question 2: Did representational form influence the type of student-constructed 

representative values? 

Measures of central tendency were the predominant distributional indices used to 

construct representative values, and accounted for over 50% of the responses in each of 

the tasks. However, the proportion of strategies using a measure of central tendency was 

higher for raw data sets (76% for task 1; 85% for task 2) than distributions presented 

using a graphical representation (60% for task 3; 64% for task 4; 66% of task 5). 

Correspondingly, measures of variability were less prevalent with raw data sets (2% and 

11%) than for graphically represented data sets (26%, 27% and 16%).  Using a chi-square 

analysis, the selected of representational index (i.e. measures of central tendency, 

variability) and representational form (graph, raw data) were found not to be independent 

(2 
(6) = 810.38, p < .000). In particular, the use of measures of center to index graphical 

distributions was larger than predicted. 

The higher use of measures of variability as descriptors for graphically 

represented data sets may be due to the fact that the graphical representation permits 

easier viewing of the variability of the data set, whereas in the raw form the data need be 

reorganized in order to facilitate examination of the variability. Examinations of the 
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responses showed that less than 1% of the students reorganized or graphed the raw data 

sets.  

 

 

Analysis and discussion 

Mokros & Russell (1995) argue that summary statistics can have no meaning for 

students unless the data set can be thought of as more than a series of numbers - an 

understanding of the data set as a unit must exist.  Results of this study indicate that this 

notion of data set as an individual entity may not exist for a proportion of preservice 

teachers, as over half of the preservice teachers utilize inadequate measures when 

attempting to index distributions of data. 

The mean was the predominant measure used to represent distributions regardless 

of the distributional shape, indicating a lack of awareness of the repertoire of indices 

available.  The propensity to calculate means regardless of distributional shape suggests 

that the mean represents a significant measure for preservice teachers. Other studies have 

suggested that use of the mean reflects a computational act more than a conceptual one, 

and that while many students may be able to compute the mean, few possess strong 

conceptual understanding of the nature of the mean (Skemp, 1979). Author & 

O’Loughlin (2002) asked preservice teachers to explain what the mean represents in the 

context of a distribution of scores and found that conceptualizations of the mean were 

limited to a formulaic notion of average. The fact that 41% of participants in this study 

constructed a mean to represent two or more distributions, regardless of distributional 

shape, may suggest that poor conceptual understanding exists of the function, role and 

limitations of the mean. This is concerning as preservice teachers may pass on their 
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predispositions for the mean as a representative index to students in their future 

classrooms. 

The study also highlights a lack of attention paid to measures of variability, 

particularly when the data were not presented in graphical form. A study of elementary 

and middle grade students constructions of typicality carried out by Author & Middleton 

(2001) found that younger students were more likely to employ measures of variability in 

their descriptions of distribution, and also that as students gained more experience 

working with measures of center they dispensed with reference to measures of variability 

in their descriptions of distributions. This may account for the lack of reference to 

variability in this study, an unfortunate pattern as measures of variability are necessary to 

supplement measures of location, which do not describe the dispersion among the data 

points. This suggestion of the mean computational formula gaining primacy to the 

detriment of the other forms of understanding was also proposed by Pollatsek, Lima & 

Well (1981) in a study of undergraduate psychology students’ understanding of the 

weighted mean.  

In addition, a lack of awareness of the functionality of graphical representations 

was evident in the absence of responses that reorganized or graphed the raw data sets. 

This finding has serious implications for classroom instruction as graphing data 

represents a significant stage in the data modeling process and influences the subsequent 

interpretation and analysis of data. If preservice teachers do not use graphical 

representations as tools to analyze data, then they are unlikely to advocate their use in 

classroom contexts. This hypothesis is supported by a study carried out by Heaton & 

Mickelson (2002) which found that preservice elementary teachers, when engaging 
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children in statistical investigation, focus predominantly on the technical aspects of graph 

construction and do not use the representations as tools to analyze data or to make 

connections back to research question.  

The findings of this study have several implications for preservice education. The 

ability of preservice teachers to construct measures of central tendency and variability, 

when presented with graphical distributions of data and raw data sets, indicates that they 

possess statistical content knowledge. This is an important and encouraging finding. Less 

encouraging, however, was the fact that many of these measures chosen to index 

distributions of data were not adequately representative. This may be due to the lack of 

experiences that preservice teachers have had with data. What this study highlights is the 

need for teacher educators to build on preservice teachers’ content knowledge and 

intensify their efforts to help future teachers reason about distributions of data. Preservice 

teachers need to be provided with opportunities to engage in statistical investigations as 

learners first and then as teachers (Heaton & Mickelson, 2002). This will support 

explorations of how to best scrutinize, describe, index and represent data. Preservice 

teachers need to be afforded opportunities to see data sets as entities and examine the 

relationships between distributions of data and the measures that index them. Studies 

have shown that technological tools can support such investigations; hence the 

incorporation of such tools at preservice levels may be necessary. A small proportion of 

preservice teachers coordinated measures of variability and center in an effort to 

represent distributions of data, these students’ reasoning needs to be explored and tasks 

designed to facilitate the development of similar approaches within the preservice 

elementary teacher population.  
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