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In a comprehensive paper by Riggs et al.(1978) the authors analyse 
the performances of numerous estimators for the regression slope 
in the measurement error model with positive measurement error 

variances   
 >0 0 for X and   

 >0 for Y . In particular, using a 
Monte Carlo simulation, the authors demonstrate that the adjusted 
geometric mean estimator of Madansky (1959, Equation 4, p. 179), 

which requires knowledge of both   
  and   

 , performs “much 
worse than” the maximum likelihood estimator in the normal 
structural measurement error model which requires only 

knowledge of the ratio      
    

 . The second moment estimator, 

  
   

coincides with the maximum likelihood estimator inthe normal 

structural measurement error model (Madansky (1959)). In 
practice κ has to be estimated by   .In this paper, we show that the 

bias of   
   

is not only dependent on the magnitude of the 

difference between κ and    but also on the magnitude of     
 -  

 . 
We use a fourth moment estimator to smooth the jump 
discontinuity in the estimator of Copas (1972) as described in 
ODriscoll and Ramirez (2011) and use this estimator to find 

estimates for each error variance   
 and   

 . Our Monte Carlo 
simulations show that the adjusted geometric mean estimator of 
Madansky performs much better than the ordinary least squares 
estimators OLS(y|x) and OLS(x|y) when the error variances are 
strictly positive and performs equally as well as the geometric 

estimator,   
  

, and the perpendicular estimator of Adcock (1878), 

  
   

, with κ = 1 . 

Keywords: Moment estimation; measurement errors; errors in 
variables. 
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With ordinary least squares OLS(y|x) regression we have data 
 

{(x1, Y1|X = x1), . . . , (xn, Yn|Xn = xn)}, 
 
and we minimize the sum of the squared vertical errors to find the best-fit line 
y = h(x) =β0 + β1x, where it is assumed that the independent or causal variable 
X is measured without error. In this paper it is assumed that X and Y are 

random variables with respective finite variances   
 

 and   
 , finite fourth 

moments and have the linear relationship Y = β0 + β1X It is also assumed that 
the xi are a random sample from the random variable X. In the chapter of 
Measurement Error Model we outline the assumptions of the measurement 
error model and give second and fourth order moment equations. In the next 
chapter we give an expression for the asymptotic bias of the second moment 
estimator. We show that this bias is dependent on the magnitude of the error 

variance   
  associated with the X variable and illustrate this result in Table 1 

using a Monte Carlo simulation. We introduce a fourth order slope estimator 
and suggest that this estimator be used in the second order moment equations 

to estimate   
 

  and   
 . When      

    
 , the maximum likelihood estimator 

  
   

=   1(κ) (see for example, Madansky (1959, Equation 3)) has been dubbed 

by Riggs (1978, p. 1320) as the Properly Weighted Perpendicular Least 
Squares Estimator. The geometric mean of Madansky’s estimators from his 
Equations 1 and2 is given in Equation 4 which we have dubbed as Madansky’s 

Adjusted Geometric Mean Estimator and is denoted by   
   

. Using a second 

Monte Carlo simulation, we investigate the performance of each of the five 

estimators estimators   
   

,   
   

,  
   

,  
  

and    
   

. In the next chapter we 

present two applications of   
   

and compare its performance to the results in 

the literature. In the final chapter of this paper we conclude that   
   

 

performs equally as well as   
   

and   
  

and much better than the ordinary 

least squares estimators   
   

and   
   

. 

 
 
 
The Measurement Error Model 
 

The observed data {(xi, yi), 1 ≤ i ≤ n} are subject to error by xi = Xi+δi and 

yi = Yi+τi, where it is also assumed that δ is N(0,   
 ), τ is N(0,   

 ), Cov(δi, δj) = 
0, i ≠ j, Cov(τi, τj) = 0, i ≠ j and Cov(δi, τj) = 0, for all i and j. Let 

 

 
 

From Gillard and Iles (2009) it follows that second moment equations are 

 
which yield the second moment estimators 
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Fourth moment equations are 

 
If the ratio of the error variances      

    
  is assumed finite, then the 

second moment estimator for the regression slope is 

 
which coincides with the maximum likelihood estimator of the regression 
slope in the normal structural measurement error model (see Madansky 
(1959) and Davidov (2005)). If κ = 1 in Eqn. (4), then the moment estimator 
(often called the Deming (1943) Regression Estimator) is equivalent to the 

perpendicular estimator,   
   

, first introduced by Adcock (1878). Similarly, if 

κ = 0 in Eqn. (4), then the moment estimator reduces to OLS(X|Y),   
   

, and if 

κ = ∞ then the moment estimator reduces to OLS(Y|X),   
   

. 

Since the second sample moments converge in probability to their 
expectations (see Davidov (2005) and Mamun et al. (2013)), it follows from (1) 
that 

 
where   

 /  
  is the noise to signal ratio of the model. 

If the researcher knows the true error      
    

 , then 

 
and there are no asymptotic bias problems. We will discuss the more realistic 
situation when κ  is an unknown parameter and must be estimated by   . 
 
 
The Empirical Bias of the Second Moment Estimator for an 
Incorrect Choice of κ 
 
Empirical Bias 

In practice, the researcher estimates κ by    with error є = κ −   ≠ 0. To 

develop an expression for the asymptotic bias E(  1(  ) - β1), we recall Eqn. (4) 
and write 

 
 

We define the empirical bias in using    to estimate κ as empbias(  :κ) = 

  1(  )-  1(κ), which in terms of {sxx, syy, sxy} is 
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The empirical bias is an estimate of the error that occurs in   1(κ) as a 
result of using    for the unknown error ratio κ. In our simulation study we 

record estimates for both Ebias = E(  1(  ) - β1) and Eemp = E(  1(  )-  1(κ)) in 
Table 1. They are, as expected, nearly equal values, and are both close to the 
theoretical values for the bias, bias(   : κ). 

With є = κ −   ≠ 0 and θ = 1+  
 /  

 , the bias, bias(   : κ), in terms of {β1, є, 
κ, θ} is then 

 
We note that bias(   : κ)= 0 only when є = κ −    = 0 as proven by Lindley, 

D., El-Sayyad, M. (1968). 
 

Series Expansion for the Bias 
The series expansion, serbias(   : κ), of the bias may be written in terms of 

є as 

 
Since 

 
Equation (8) shows that bias(   : κ) is not alone dependent on the 

magnitude of (    - κ), but is also dependent on the magnitude of   
 ; that is, the 

magnitude of the bias is dependent on the magnitude of the difference     
 

 - 

  
 , and our claim in the Abstract is justified. 

 
Monte Carlo Simulation 

We used Minitab for our simulation study setting the number of runs N = 
5000,    = 1 and the sample size n = 50 . The X data was generated from a 
normal β1 = 1 and β0 = 0. For the measurement error model, we used normal 

errors with mean equal to zero and variances {  
 ,   

 } varying over {1, 2, 3, 4, 

9}. Typical values for the bias, bias(   : κ) from Equation (7), and the Third 
Order series approximation, serbias(   : κ) from Equation (8), are shown in 
Table 1. We note that the Third Order approximation yields, as expected, 
values close to the theoretical values for the bias, bias(   : κ). We also record 

the results for the asymptotic bias E(  1(  ) - β1), and the estimated empirical 

bias E(  1(  )-  1(κ)). 
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The rows of Table 1 are sorted in ascending order of the theoretical bias, 

bias(   : κ) displayed in Column 7. Column 8 shows that our approximation, 
serbias(   : κ), is a good estimate for bias(   : κ). Columns 5 and 6 also show 

that our simulation study produced very good results for E(  1(  ) - β1), and E 

E(  1(  )-  1(κ)). 
We make the following observations. Firstly, with    = 1, the ranking for 

the bias concurs with the ranking of the differences in the error variances   
  − 

  
 

 but does not concur with the ranking for κ =   
  /  

 
 in terms of its closeness 

to   ; that is, the magnitude of the bias for the MLE estimator   1(κ) is not 
monotone in κ. Secondly, for equal κ = 3/1 in Row 6 and κ = 9/3 in Row 8, the 
respective biases 0.0101 and 0.0304 are approximately proportional to the 
respective differences of the error variances 2 and 6. 

Since the asymptotic bias E(  1(  ) - β1) is dependent on the magnitude of 

  
 , we investigated the use of second and fourth moments to estimate each of 

the error variances. 
 

Using Second and Fourth Moments to Estimate the Error Variances   
  and 

  
 

 

O’Driscoll and Ramirez (2011) suggested using the fourth moment slope 
estimator 

 
described by Gillard and Iles (2005, Eqn. 26) to smooth out the jump 

discontinuity between   
   

and   
   

. For sxy > 0, the authors define   
   

as: 
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The estimators  and  of Equation (2) are computed using   1= 

  
   

and we constrain the moment estimators so that the error variances are 

non-negative. We then use these estimates in Madansky’s adjusted geometric 
mean estimator 

 
 

Some authors such as Al-Nasser (2012) refer to Gillard and Iles (2009) 
who suggest using 

 

as an estimator for κ in Equation (4) to find   
   

. However, as noted in 

O’Driscoll and Ramirez (2011, Proposition 3), there is a circular relationship 

between    and   
   

=   1(  ) such that   1(  (β1)) = β1; and in particular, 

  1(  (  
   

) =   
   

. 

In a second simulation study we again set β1 = 1 and β0 = 0. The X data 
was generated from a uniform distribution on (0, 20) so that the error 

variances {  
 ,   

 } varying over {1, 4, 9} would have a strong impact on the 
bias of the regression slope. Table 2 records the expected values and standard 

deviations of our estimators for   
 and   

  using   
   

as an estimate for the 

slope β1 in Equation (2). 
 

 
Tables 3A, 3B and 3C record the expected means, standard deviations and 

mean square errors for the five estimators   
   

,   
   

,  
   

,  
  

and    
   

 where 

  
   

is used in Equation (2)to estimate   
 

 and   
 . Our values recorded in the 

set count are the number of times that   
  

was not defined, that   
  had to be 

increased to zero and that   
 

 had to be increased to zero respectively. Note 



An Investigation of the Performance of Five Different  
Estimators in the Measurement Error Regression Model  

 

153 

that   
  

requires the term under the radical to be non negative and hence for 

our simulation we chose the uniform distribution. 
 

 

 

 
From Table 3A with   

 = 9 and   
 = 1 the MSEs for   

   
and   

   
are 

0.04617 and 0.00801 respectively. The MSE for   
   

is comparable to 

  
   

with value 0.00921 and is smaller than the MSEs for the other three slope 

estimators. From Table 3C with   
  = 1 and   

 = 9 the MSEs for   
   

and 

  
   

are 0.00664 and 0.08324. The MSE for   
   

is comparable to   
   

with 

value 0.01102 and is again smaller then the the MSEs for the other three slope 

estimators. Thus   
   

is robust when compared to a random choice between 

  
   

and   
   

. 
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Applications 
 
Example 1 
Riggs (1978) presented a small example with n = 6, X = [−4,−3,−2, 0, 3, 6] and 

Y = [−5,−1,−1,−2, 3, 6] and assumes that   
 = 4.933 is known. In the case 

where   
 

 is known Madansky proposed the estimator   
  = (syy −  

 )/sxy which 

for this data set gave an unsuitable line fit with negative slope. However, in 
practice suitable constraints have to be placed on the estimator equations such 

that 0 <  < sxx and 0 <  < syy. Our estimated value for   
 

 is 1.55 which 

yields   
  = 0.946. In the case where   

  is known Madansky proposed the 

estimator   
  = sxy/(syy−  

 ) which yields   
   = 1.063 with an estimated value 

for   
 = .082. (see Riggs(1978, Eqns. 35 and 37, p. 1320)). With these estimates 

of   
  and   

 
 Madansky’s adjusted geometric mean estimator yields   

   
= 

0.9522. Thus the anomaly with the original Madansky estimate does not exist 
with Madansky’s adjusted geometric mean estimator. 
 
Example 2 

Mamun et al. (2013) introduced a nonparametric estimator to the slope 
for measurement error models. They considered the serum kanamycin data set 
from Kelly (1984) with n = 20 for which they found the estimator of the slope 

β1 = 1.0 with   
 = 3.4 and   

 = 5.4. Her assumption of k = 1 is equivalent to   1=  

  
   

, the perpendicular estimator of Adcock (1878). We compute the Jackknife 

estimator for the slope   
   

and intercept   
   

 and their respective standard 

deviations and use this estimate to find variance estimators for   
  and   

 . 
These values are shown in Column 4 in Table 4. The values in Column 5 are 
our Jackknife estimators for the perpendicular estimator used by Kelly (1984). 
Our methodology has as its only restriction that the error variances must be 
positive. The results are summarised in Table 4. 
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From the data of this particular sample, the adjusted geometric mean 
estimator for β1 gives the linear calibration between the serum kanamycin 
levels in blood samples drawn simultaneously from an umbilical catheter and a 
heel venipuncture and is shown in the graph. 

 
 

Conclusion 
 

It has been demonstrated that the bias of the second moment estimator for the 
regression slope in the measurement error model is dependent on the 

magnitude of     
  −   

 . Our simulation studies suggest that using second and 
fourth moments to estimate each of the error variances in Equation (9) yields 
improvement in bias and mean square error over the ordinary least squares 

estimators   
   

and   
   

, the geometric mean estimator,   
  

, and the 

perpendicular estimator   
   

. 
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