
Journal of Physics: Conference Series

The Belavin-Drinfeld theorem on non-degenerate solutions of the
classical Yang-Baxter equation
To cite this article: Lisa Kierans and Bernd Kreussler 2012 J. Phys.: Conf. Ser. 346 012011

 

View the article online for updates and enhancements.

This content was downloaded from IP address 193.1.104.14 on 09/10/2018 at 11:23

https://doi.org/10.1088/1742-6596/346/1/012011
http://oas.iop.org/5c/iopscience.iop.org/58536731/Middle/IOPP/IOPs-Mid-JPCS-pdf/IOPs-Mid-JPCS-pdf.jpg/1?


The Belavin-Drinfeld theorem on non-degenerate
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E-mail: bernd.kreussler@mic.ul.ie

Abstract. We give a coordinate free proof of Belavin and Drinfeld’s Theorem about the
classification of non-degenerate solutions of the classical Yang-Baxter equation. The equivalence
of different characterisations of non-degeneracy is also shown in such a way.

1. Introduction
What is now called the (Quantum) Yang-Baxter Equation was introduced around 1970
independently by C. N. Yang and R. J. Baxter. The Classical Yang-Baxter Equation (CYBE),
see Section 3 equation (3.1), can be derived from it by considering the linear part of a solution
which is a power series in an auxiliary parameter. It now plays an important role in the study of
Lie bialgebras and quantum groups. More recently, A. Polishchuk [10] discovered an interesting
connection between solutions of CYBE and structural properties of derived categories of coherent
sheaves on projective curves of arithmetic genus one. Further work on this connection was done
by I. Burban and B. Kreussler [6] which includes some explicit examples and a relative version
of Polishchuk’s construction which can be used to explain degeneration of solutions.

Despite the developments in the past three decades, the results obtained by A. Belavin and
V. Drinfeld in [2] are still fundamental for the study of solutions of CYBE. In this note we focus
on non-degenerate solutions of CYBE and the trichotomy of solutions: rational, trigonometric
and elliptic. Our contribution is a reformulation of the technical details of the proofs in [2] in
a coordinate free way. We think that the key steps of the proofs become more transparent this
way. We also filled in some details which we felt were a bit sketchy originally.

2. Preliminaries
All Lie algebras considered in this article will be finite dimensional complex Lie algebras. Let g
be a semi-simple finite dimensional complex Lie algebra. If β : g⊗ g −→ C is a non-degenerate
(symmetric invariant) bilinear form, we denote by ϕβ : g −→ g∗ the corresponding isomorphism,
given by ϕβ(a) = β(a, · ). A bilinear form β is called invariant or associative if for all a, b, c ∈ g
we have β(a, [b, c]) = β([a, b], c). If β = κ is the Killing form, which is non-degenerate by
Cartan’s Theorem and symmetric and invariant, we simply write ϕ = ϕκ.

The isomorphisms 1g ⊗ ϕ : g⊗ g −→ g⊗ g∗ and 1g ⊗ ϕ⊗ ϕ : g⊗ g⊗ g −→ g⊗ g∗ ⊗ g∗ give
us isomorphisms of vector spaces

ϕ1 : g⊗ g −→ Hom(g, g) ϕ2 : g⊗ g⊗ g −→ Hom(g⊗ g, g)
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which are explicitly given by

ϕ1(a⊗ b)(x) = κ(b, x) · a ϕ2(a⊗ b⊗ c)(x⊗ y) = κ(b, x)κ(c, y) · a.

We call the tensor Ω ∈ g⊗ g, which is characterised by ϕ1(Ω) = 1g, the Casimir element. If
I1, . . . , In is an orthonormal basis of g with respect to the Killing form, then Ω =

∑n
µ=1 Iµ⊗ Iµ.

These definitions work for any non-degenerate symmetric invariant bilinear form β. If β 6= κ,

we write ϕβ1 , ϕ
β
2 and Ωβ instead of ϕ1, ϕ2 and Ω respectively. For λ ∈ C∗ we then have

ϕλβ1 = λϕβ1 , ϕ
λβ
2 = λ2ϕβ2 and λΩλβ = Ωβ. As we will later focus on simple Lie algebras,

this shows that it is sufficient to work with κ, because on a simple Lie algebra over C any
non-degenerate symmetric invariant bilinear form is a multiple of κ.

Example 2.1. The Lie algebra sl(2), whose elements are the 2 × 2 matrices of trace zero, is
simple. The standard basis elements

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
enjoy the identities [e, f ] = h, [h, e] = 2e, [h, f ] = −2f . The trace form with respect to the
natural representation is given by β(a, b) = tr(ab) for a, b ∈ sl(2). It is related to the Killing
form κ(a, b) = tr

(
ad(a) ad(b)

)
by κ = 4β. Hence, Ω = 1

4Ωβ and a straightforward calculation

shows 4Ω = Ωβ = 1
2h⊗ h+ e⊗ f + f ⊗ e.

Lemma 2.2. If g is simple, f ∈ Hom(g, g) and [ad(x), f ] = 0 for all x ∈ g, then f ∈ C · 1g.

Proof. This follows from Schur’s Lemma, because the assumption that [ad(x), f ] = 0 for all
x ∈ g is equivalent to f : g −→ g being a homomorphism of g-modules.

Lemma 2.3. If g is a simple Lie algebra and ψ : g −→ g a homomorphism of Lie algebras, then
det(ψ) ∈ {−1, 0, 1}.

Proof. Because g is simple, ker(ψ) can only be 0 or g. Hence, det(ψ) = 0 iff ψ = 0. Assume
now ψ 6= 0, then ψ is an automorphism of g. We show that then κ(ψ(x), ψ(y)) = κ(x, y) for all
x, y ∈ g. To do so, we rewrite ψ[x, y] = [ψ(x), ψ(y)] as ψ ◦ ad(x) = ad

(
ψ(x)

)
◦ ψ. This implies

ψ◦ad(x)◦ψ−1 = ad
(
ψ(x)

)
from which we obtain ψ◦ad(x)◦ad(y)◦ψ−1 = ad

(
ψ(x)

)
◦ad

(
ψ(y)

)
for

all x, y ∈ g. Because tr(MCM−1) = tr(C), this implies κ(ψ(x), ψ(y)) = κ(x, y) for all x, y ∈ g.
This means that ψ∗ = ψ−1, hence det(ψ)2 = 1 and the claim follows.

Lemma 2.4. Let f, g ∈ Hom(g, g) and denote by g∗ the adjoint of g with respect to the Killing
form. Then, for all a, b ∈ g,

ϕ1

(
f(a)⊗ g(b)

)
= f ◦ ϕ1(a⊗ b) ◦ g∗.

This means that the following diagram is commutative

g⊗ g
ϕ1−−−−→ Hom(g, g)

f⊗g
y yf◦ ◦g∗

g⊗ g
ϕ1−−−−→ Hom(g, g).

Proof. For a, b, x ∈ g we have ϕ1

(
f(a) ⊗ g(b)

)
(x) = κ(g(b), x)f(a) = f

(
κ(g(b), x)a

)
=

f
(
κ(b, g∗(x))a

)
= f

(
ϕ1(a⊗ b)(g∗(x))

)
where we have used the symmetry of κ.
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Corollary 2.5. For each A ∈ g⊗ g we have (ϕ1(A)⊗ 1g) (Ω) = A.

Proof. Because ϕ1(Ω) = 1g, we have ϕ1 (ϕ1(A)⊗ 1g) (Ω) = ϕ1(A) ◦ ϕ1(Ω) = ϕ1(A). The claim
follows as ϕ1 is an isomorphism.

Lemma 2.6. Let τ : g⊗ g −→ g⊗ g denote the swapping map τ(a⊗ b) = b⊗ a and A ∈ g⊗ g.
Then ϕ1(τA) = ϕ1(A)∗ (the adjoint with respect to the Killing form).

Proof. It is sufficient to consider A = a⊗ b. Using the symmetry of the Killing form, we obtain
κ
(
ϕ1(a⊗ b)(x), y

)
= κ

(
κ(b, x)a, y

)
= κ(b, x)κ(a, y) = κ

(
x, κ(a, y)b

)
= κ

(
x, ϕ1(b⊗ a)(y)

)
.

A tensor A ∈ g⊗ g is called unitary if τA = −A as this is equivalent to ϕ1(A)∗ = −ϕ1(A).

Definition 2.7. A meromorphic function r : U → g⊗g, defined on an open disc U ⊂ C centred
at the origin, is called unitary iff for all u ∈ U at which r is holomorphic, τr(u) = −r(−u).

A calculation similar to the one in the proof of Lemma 2.4 gives the following.

Lemma 2.8. Let f, g, h ∈ Hom(g, g) and denote by g∗, h∗ the adjoint of g, h with respect to the
Killing form. Then, for all a, b, c ∈ g,

ϕ2

(
f(a)⊗ g(b)⊗ h(c)

)
= f ◦ ϕ2(a⊗ b⊗ c) ◦ (g∗ ⊗ h∗).

This means that the following diagram is commutative

g⊗ g⊗ g
ϕ2−−−−→ Hom(g⊗ g, g)

f⊗g⊗h
y yf◦ ◦(g∗⊗h∗)

g⊗ g⊗ g
ϕ2−−−−→ Hom(g⊗ g, g).

Corollary 2.9. For each A ∈ g⊗g⊗g we have
(
ϕ2(A)⊗1g⊗1g

)
(Ω′) = A, where Ω′ = τ23(Ω⊗Ω)

and τ23 : g⊗4 −→ g⊗4 is the swapping map τ23(a1 ⊗ b1 ⊗ a2 ⊗ b2) = a1 ⊗ a2 ⊗ b1 ⊗ b2.

Proof. If we set ϕ′2 = (ϕ1⊗ϕ1)◦τ23, then ϕ′2(Ω′) = 1g⊗1g = 1g⊗g. A straightforward calculation
shows ϕ2 ◦

(
ϕ2(A) ⊗ 1g ⊗ 1g

)
= ϕ2(A) ◦ ϕ′2, from which we obtain the claim, because ϕ2 is an

isomorphism.

Definition 2.10. We call A ∈ g⊗ g non-degenerate iff det(ϕ1(A)) 6= 0.

For any A ∈ g ⊗ g we define VA = im (ϕ1(A)) ⊂ g. In general, this is a subspace only, and
we have

A is non-degenerate ⇐⇒ VA = g.

If V ⊂ g is a subspace and A ∈ V ⊗ g, then it is clear from the definition of ϕ1 that VA ⊂ V .
On the other hand, Corollary 2.5 implies A ∈ VA ⊗ g. Therefore, we have

A ∈ V ⊗ g ⇐⇒ VA ⊂ V. (2.1)

Similarly, using Corollary 2.9, we obtain for each subspace V ⊂ g and A ∈ g⊗ g⊗ g

A ∈ V ⊗ g⊗ g ⇐⇒ im(ϕ2(A)) ⊂ V. (2.2)

Definition 2.11. A meromorphic function r : U −→ g⊗ g, defined on an open subset U ⊂ Cn,
is called non-degenerate iff there exists u0 ∈ U such that the tensor r(u0) is non-degenerate, i.e.
Vr(u0) = g.
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Remark 2.12. If r : U −→ g ⊗ g is non-degenerate, then the meromorphic function
u 7→ det(ϕ1(r(u))) is not identically zero, hence vanishes only on a subset of codimension one
in U . This means that a non-degenerate function r will have r(u) non-degenerate for all u in an
open dense subset of U , provided that U is connected.

Definition 2.13. If A is an associative unital C-algebra, we define linear maps φij : A⊗A −→
A⊗A⊗A for all i, j ∈ {1, 2, 3} with i > j by φ12(a⊗ b) = a⊗ b⊗ 1, φ13(a⊗ b) = a⊗ 1⊗ b and
φ23(a⊗ b) = 1⊗ a⊗ b. We shall often write (a⊗ b)ij instead of φij(a⊗ b).

Any associative algebra A becomes a Lie algebra if we define a Lie-bracket by

[A,B] = A ·B −B ·A.

Any Lie algebra g is a subalgebra of its universal enveloping algebra U(g), which is an associative
unital algebra. Using the Lie bracket on U(g) ⊗ U(g) ⊗ U(g), for a, b, c, d ∈ g, we obtain the
following expressions in g⊗ g⊗ g

[(a⊗ b)12, (c⊗ d)13] = [a, c]⊗ b⊗ d,
[(a⊗ b)12, (c⊗ d)23] = a⊗ [b, c]⊗ d,
[(a⊗ b)13, (c⊗ d)23] = a⊗ c⊗ [b, d].

The Classical Yang-Baxter Equation involves terms of this type only, see Section 3.

Proposition 2.14. For A,B ∈ g⊗ g, x, y ∈ g we have

(a) ϕ2

(
[A12, B13]

)
(x⊗ y) =

[
ϕ1(A)(x), ϕ1(B)(y)

]
(b) ϕ2

(
[A12, B23]

)
(x⊗ y) = −ϕ1(A)

(
[x, ϕ1(B)(y)]

)
(c) ϕ2

(
[A13, B23]

)
(x⊗ y) = ϕ1(A)

(
[ϕ1(τB)(x), y]

)
(d) ϕ1

(
[A, y ⊗ 1]

)
(x) =

[
ϕ1(A)(x), y

]
(e) ϕ1

(
[A, 1⊗ y]

)
(x) = ϕ1(A)

(
[y, x]

)
Proof. It is sufficient to consider A = a ⊗ b and B = c ⊗ d with a, b, c, d ∈ g. Using the
definitions, we obtain ϕ2

(
[A12, B13]

)
(x⊗ y) = ϕ2

(
[a, c]⊗ b⊗ d

)
(x⊗ y) = κ(b, x)κ(d, y) · [a, c] =[

κ(b, x)a, κ(d, y)c
]

=
[
ϕ1(A)(x), ϕ1(B)(y)

]
.

To show (b), we use the invariance of the Killing form:

ϕ2

(
[A12, B23]

)
(x⊗ y) = ϕ2

(
a⊗ [b, c]⊗ d

)
(x⊗ y) = κ([b, c], x)κ(d, y) · a

= −κ(b, [x, c])κ(d, y) · a = −κ(b, [x, κ(d, y)c]) · a = −ϕ1(A)
(
[x, ϕ1(B)(y)]

)
.

For equation (c) we use the invariance again

ϕ2

(
[A13, B23]

)
(x⊗ y) = ϕ2

(
a⊗ c⊗ [b, d]

)
(x⊗ y) = κ(c, x)κ([b, d], y) · a

= κ(c, x)κ(b, [d, y]) · a = κ(b, [κ(c, x)d, y]) · a = ϕ1(A)
(
[ϕ1(τB)(x), y]

)
.

Finally, (d) follows directly from the definition and (e) with the aid of the invariance:

ϕ1

(
[a⊗ b, y ⊗ 1]

)
(x) = ϕ1

(
[a, y]⊗ b]

)
(x) = κ(b, x)[a, y] = [κ(b, x)a, y] =

[
ϕ1(a⊗ b)(x), y

]
ϕ1

(
[a⊗ b, 1⊗ y]

)
(x) = ϕ1

(
a⊗ [b, y]

)
(x) = κ([b, y], x)a = κ(b, [y, x])a = ϕ1(a⊗ b)

(
[y, x]

)
.

Corollary 2.15. Let g be a simple Lie algebra and A ∈ g⊗ g.
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(a) [Ω12, A13 +A23] = 0 and [A12 +A13,Ω23] = 0

(b) [Ω12,Ω13] = −[Ω12,Ω23] = [Ω13,Ω23]

(c) ϕ2

(
[Ω12,Ω13]

)
(x⊗ y) = [x, y] for all x, y ∈ g

(d) [A12,Ω23] = 0 implies A = 0

(e) [Ω12 − Ω23, A13] = 0 implies A = 0

Proof. For x, y ∈ g we obtain from Proposition 2.14

ϕ2

(
[Ω12, A13 +A23]

)
(x⊗ y) =

[
ϕ1(Ω)(x), ϕ1(A)(y)

]
− ϕ1(Ω)

(
[x, ϕ1(A)(y)]

)
=
[
x, ϕ1(A)(y)

]
−
[
x, ϕ1(A)(y)

]
= 0,

hence
[
Ω12, A13 +A23

]
= 0. The proof of the second equality in (a) is similar, but uses τΩ = Ω,

which follows from Lemma 2.6. With A = Ω in (a) we obtain (b). Part (c) is a direct consequence
of Proposition 2.14 (a) and ϕ1(Ω) = 1g.

If
[
A12,Ω23

]
= 0, we obtain from Proposition 2.14 (b) that ϕ1(A)[x, y] = 0 for all x, y ∈ g.

As g is simple, [g, g] = g, and so we conclude ϕ1(A) = 0, hence A = 0 and (d) is shown.
Finally, using Proposition 2.14, we translate [Ω12 − Ω23, A13] = 0 into

[x, ϕ1(A)(y)] + ϕ1(A)[x, y] = 0 (2.3)

for all x, y ∈ g, which can be rewritten as ad(x) ◦ ϕ1(A) + ϕ1(A) ◦ ad(x) = 0 for all x ∈ g. If we
apply ad(y) ◦ + ◦ ad(y) to this identity, we obtain for all x, y ∈ g

ad(y) ◦ ad(x) ◦ ϕ1(A) + ϕ1(A) ◦ ad(x) ◦ ad(y) + ad(x) ◦ ϕ1(A) ◦ ad(y)

+ ad(y) ◦ ϕ1(A) ◦ ad(x) = 0.

Taking the difference between this expression and the one obtained from it by swapping x and
y gives ad

(
[x, y]

)
◦ ϕ1(A) − ϕ1(A) ◦ ad

(
[x, y]

)
= 0. As g is simple, we have [g, g] = g and so

[ad(x), ϕ1(A)] = 0 for all x ∈ g. Lemma 2.2 implies now that ϕ1(A) = λ1g for some λ ∈ C.
Using this in (2.3), we obtain 2λ[x, y] = 0 for all x, y ∈ g, hence λ = 0 and so also A = 0.

Lemma 2.16. If A ∈ g⊗ g is non-degenerate, then [A12, A13] 6= 0.

Proof. If
[
A12, A13

]
= 0, Proposition 2.14 (a) implies

[
ϕ1(A)(x), ϕ1(A)(y)

]
= 0 for all x, y ∈ g.

This means [X,Y ] = 0 for all X,Y ∈ VA. As A is non-degenerate, we have VA = g. But g is not
abelian, hence

[
A12, A13

]
cannot vanish.

Lemma 2.17. Let A,B ∈ g⊗ g and a = {x ∈ g | [x, v] ∈ VB for all v ∈ VB}, then

(a) a ⊂ g is a Lie subalgebra and a = g if and only if VB is an ideal in g;

(b) If
[
B12, A13

]
∈ VB ⊗ g⊗ g, then A ∈ a⊗ g;

(c) If
[
A12, B23

]
∈ g⊗ VB ⊗ g, then A ∈ g⊗ a.

Proof. The proof of (a) is a consequence of the Jacobi identity and the definitions. If[
B12, A13

]
∈ VB ⊗ g⊗ g, the image of ϕ2

([
B12, A13

])
is contained in VB, see (2.2). Proposition

2.14 (a) implies now that
[
ϕ1(B)(x), ϕ1(A)(y)

]
∈ VB for all x, y ∈ g. As VB = im (ϕ1(B)) this

means that ϕ1(A)(y) ∈ a for all y ∈ g, i.e. VA ⊂ a. This implies A ∈ a ⊗ g, see (2.1), hence
we have shown (b). To prove (c) we use the swapping operator τ12 : g ⊗ g −→ g ⊗ g, given
by τ12(a ⊗ b ⊗ c) = b ⊗ a ⊗ c. Because τ12

[
A12, B23

]
= [(τA)12, B13], the assumption implies

[(τA)12, B13] ∈ VB ⊗ g⊗ g. Like before, this implies
[
ϕ1(τA)(x), ϕ1(B)(y)

]
∈ VB for all x, y ∈ g,

from which we get ϕ1(τA)(x) ∈ a for all x ∈ g. Therefore, τA ∈ a⊗ g, i.e. A ∈ g⊗ a.
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Lemma 2.18. Let A,B ∈ g ⊗ g such that
[
B12, A13 +A23

]
= 0, then A ∈ a ⊗ g, where

a = {x ∈ g | [ad(x), ϕ1(B)] = 0} ⊂ g, which is a Lie subalgebra.

Proof. Because ad : g −→ End(g) is a homomorphism of Lie algebras and centralisers are
subalgebras, a ⊂ g is a Lie subalgebra. If

[
B12, A13 +A23

]
= 0, we obtain from Proposition 2.14

for all x, y ∈ g

0 = ϕ2

([
B12, A13 +A23

])
(x⊗ y) =

[
ϕ1(B)(x), ϕ1(A)(y)

]
− ϕ1(B)

[
x, ϕ1(A)(y)

]
= ϕ1(B)

[
ϕ1(A)(y), x

]
−
[
ϕ1(A)(y), ϕ1(B)(x)

]
=
(
ϕ1(B) ◦ ad

(
ϕ1(A)(y)

)
− ad

(
ϕ1(A)(y)

)
◦ ϕ1(B)

)
(x),

hence
[
ϕ1(B), ad

(
ϕ1(A)(y)

)]
= 0 and so ϕ1(A)(y) ∈ a for all y ∈ g. Because of (2.1) this implies

A ∈ a⊗ g.

3. The Classical Yang Baxter Equation
The Classical Yang Baxter Equation, referred to as (CYBE), is the equation

[r12(u), r13(u+ v)] + [r12(u), r23(v)] + [r13(u+ v), r23(v)] = 0 (3.1)

for r : U −→ g⊗ g being a meromorphic function defined on an open neighbourhood U ⊂ C of
the origin. In this equation, it is assumed that u, v, u+ v ∈ U . This equation makes also sense
if U is a neighbourhood of the origin in Cn, but should not be confused with the classical Yang
Baxter equation with two spectral parameters if n = 2.

Throughout this section, g denotes a finite-dimensional simple complex Lie algebra.

Lemma 3.1. If r : U −→ g ⊗ g is a non-degenerate holomorphic solution of (CYBE), defined
on an open disc U ⊂ C centred at the origin, then r(0) is a non-degenerate tensor.

Proof. There exists u0 ∈ U such that r(u0) is non-degenerate. Let us denote Tu = ϕ1(r(u)) and
ψu = Tu ◦ T−1

u0 for all u ∈ U . We show now that ψu is a homomorphism of Lie algebras.
Let v = 0 in (3.1) and apply ϕ2. Using Proposition 2.14, this produces

[Tu(x), Tu(y)] = Tu
(
[x, T0(y)]− [T ∗0 (x), y]

)
.

Setting u = u0 and applying ψu makes this into

ψu[Tu0(x), Tu0(y)] = Tu
(
[x, T0(y)]− [T ∗0 (x), y]

)
.

Both equations have the same right hand side. Therefore, with X = Tu0(x) and Y = Tu0(y)
we obtain ψu[X,Y ] = [ψu(X), ψu(Y )]. Because Tu0 is an isomorphism, this equation shows
that ψ is a homomorphism of Lie algebras. Because det(ψu) is a continuous function on U
which can, by Lemma 2.3, only take the three values −1, 0, 1, it must be constant. Therefore
det(ψ0) = det(ψu0) = 1 and T0 is invertible. This shows that r(0) is non-degenerate.

3.1. Constant Solutions
Let g be a simple Lie algebra. The aim of this subsection is to show that the Classical Yang-
Baxter Equation (3.1) does not have non-degenerate constant solutions. This result will be
needed in the proof of Theorem 3.6.

A constant solution of (3.1) is given by a tensor r0 ∈ g⊗ g which satisfies[
r12

0 , r
13
0

]
+
[
r12

0 , r
23
0

]
+
[
r13

0 , r
23
0

]
= 0. (3.2)

Within this subsection we shall frequently use the abbreviation T = ϕ1(r0). A tensor r0 is
unitary iff τr0 = −r0, or equivalently, if the adjoint with respect to the Killing form on g
satisfies T ∗ = −T , see Lemma 2.6.
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Lemma 3.2. Let r0 ∈ g⊗ g and T = ϕ1(r0).

(a) Equation (3.2) is equivalent to

[T (x), T (y)]− T
(

[x, T (y)]− [T ∗(x), y]
)

= 0 ∀ x, y ∈ g. (3.3)

(b) For λ ∈ C, the equation r0 + τr0 = λΩ is equivalent to T + T ∗ = λ1g.

(c) If λ ∈ C and r0 + τr0 = λΩ, then equation (3.2) is equivalent to

[T (x), T (y)] = T
(

[x, T (y)] + [T (x), y]− λ[x, y]
)

∀ x, y ∈ g. (3.4)

Proof. From Proposition 2.14 we obtain

ϕ2

([
r12

0 , r
13
0

])
(x⊗ y) = [T (x), T (y)] , ϕ2

([
r12

0 , r
23
0

])
(x⊗ y) = −T [x, T (y)]

and ϕ2

([
r13

0 , r
23
0

])
(x⊗ y) = T [T ∗(x), y] which gives (a).

Part (b) follows from Lemma 2.6, and (c) is clear from (a) and (b).

We need the following result, a proof of which can be found in [4, Theorem 9.2].

Theorem 3.3. If ψ : g −→ g is an automorphism of the simple Lie algebra g, then there exists
a non-zero element x ∈ g such that ψ(x) = x, i.e. det(ψ − 1g) = 0.

Lemma 3.4. If r0 ∈ g⊗ g is a non-degenerate solution of (3.2), then it is unitary.

Proof. With notation as above, we have equation (3.3) for all x, y ∈ g. Interchanging x and y
and using the skew-symmetry of the Lie-bracket, we obtain from it

−[T (x), T (y)]− T
(
−[T (x), y] + [x, T ∗(y)]

)
= 0. (3.5)

Adding (3.3) and (3.5) and using that T is an isomorphism by assumption, we obtain[
(T +T ∗)(x), y

]
=
[
x, (T +T ∗)(y)

]
for all x, y ∈ g. This equation implies, using the associativity

of the Killing form and that (T + T ∗) is self-adjoint,

κ
(
x, (T + T ∗)[y, z]

)
= κ

(
(T + T ∗)(x), [y, z]

)
= κ

([
(T + T ∗)(x), y

]
, z
)

= κ
([
x, (T + T ∗)(y)

]
, z
)

= κ
(
x,
[
(T + T ∗)(y), z

])
for each z ∈ g. As κ is non-degenerate, we obtain (T+T ∗)[y, z] =

[
(T+T ∗)(y), z

]
for all y, z ∈ g,

i.e. (T + T ∗) ◦ ad(z) = ad(z) ◦ (T + T ∗) for all z ∈ g. As g is simple, Lemma 2.2 implies now
that (T + T ∗) = λ · 1g for some λ ∈ C.

We have to show that λ = 0. For a proof by contradiction, we assume λ 6= 0. Because we
could then replace r0 by r0/λ, we may even assume λ = 1. In this case, subtracting T [T (x), T (y)]
from both sides of (3.4) gives

(T − 1g)
[
T (x), T (y)

]
= T

[
(T − 1g)(x), (T − 1g)(y)

]
. (3.6)

As T was assumed to be invertible, T ∗ = 1g − T is invertible as well. Let ψ = T ◦ (T − 1g)−1 =
(T − 1g)−1 ◦ T and apply (T − 1g)−1 to (3.6). This gives[

T (x), T (y)
]

= ψ
[
(T − 1g)(x), (T − 1g)(y)

]
.

If we replace x, y with (T −1g)−1(x) and (T −1g)−1(y) respectively, we arrive at [ψ(x), ψ(y)] =
ψ[x, y], i.e. ψ is an automorphism of Lie algebras. We have ψ−1g = T ◦ (T −1g)−1− (T −1g) ◦
(T − 1g)

−1 = (T − 1g)
−1, hence det(ψ − 1g) 6= 0 in contradiction to Theorem 3.3. This proves

that λ = 0 and so T is unitary.
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Proposition 3.5. There are no non-degenerate solutions of (3.2).

Proof. Assume r0 is a non-degenerate solutions of (3.2) and let T = ϕ1(r0) as before and
S = T−1. By Lemma 3.4, T is unitary. Therefore, from Lemma 3.2 (c) with λ = 0 we
have [T (x), T (y)] = T [x, T (y)] + T [T (x), y]. Applying S and replacing x, y with S(x) and S(y)
respectively, gives

S[x, y] = [S(x), y] + [x, S(y)],

that is S is a derivation of g. For semi-simple g each derivation is equal to ad(a) for some a ∈ g.
But ad(a) is never an isomorphism, so it cannot be equal to S. This contradiction shows that
there cannot be a non-degenerate solutions r0 of (3.2).

3.2. Characterisation of non-degeneracy
In the proof of the theorem below we use the following identity, which holds for arbitrary
holomorphic functions f, g : U −→ g defined on an open set U ⊂ C and which follows from the
product rule for derivatives:

d

du
[f(u), g(u)] = [f ′(u), g(u)] + [f(u), g′(u)]. (3.7)

Theorem 3.6 (Belavin-Drinfeld). Let g be a finite-dimensional simple complex Lie algebra,
U ⊂ C an open disc with centre 0 and r : U −→ g⊗ g a meromorphic solution of CYBE. Then
the following are equivalent.

(A) The solution r is non-degenerate.

(B) The function r has at least one pole in U and there does not exist a proper Lie subalgebra
a ⊂ g such that r(u) ∈ a⊗ a for all u in a small neighbourhood of 0 ∈ U .

(C) All poles of r are simple and the residue of r at 0 is equal to λΩ for some λ ∈ C∗.
(D) The function r has a simple pole at 0 with residue equal to λΩ for some λ ∈ C∗.

Proof. (A)=⇒(B) If r is a non-degenerate holomorphic solution of (3.1), Lemma 3.1 implies
that r(0) is a non-degenerate constant solution of (3.1). This contradicts Proposition 3.5, hence
r must have at least one pole in U .

Assume a ⊂ g is a Lie subalgebra such that there exists a small neighbourhood U ′ of 0 such
that r(u) ∈ a ⊗ a for all u ∈ U ′ at which r is holomorphic. For such u, Vr(u) ⊂ a and so r(u)
can only be non-degenerate if a = g. As r was assumed to be non-degenerate, r(u) must be
non-degenerate for u ∈ U ′ except at finitely many points, see Remark 2.12. Hence, a = g.

(B)=⇒(C) Let γ ∈ U be a pole of r and k ≥ 1 the order of this pole. Let θγ = limu→γ(u−γ)kr(u)
be the leading coefficient of the Laurent series of r at γ. If we multiply (3.1) by (v− γ)k and let
v tend to γ, we obtain

[r12(u) + r13(u+ γ), θ23
γ ] = 0 (3.8)

for all u ∈ U with u+ γ ∈ U . Similarly, after multiplication by (u− γ)k we obtain

[θ12
γ , r

13(v + γ) + r23(v)] = 0 (3.9)

for all v ∈ U for which v + γ ∈ U . Recall that Vθγ = im (ϕ1(θγ)) ⊂ g is equal to g if and only if
θγ is a non-degenerate element of g⊗ g.

Note that [θ12
γ , r

23(v)] ∈ Vθγ ⊗ g⊗ g and [r13(u+ γ), θ23
γ ] ∈ g⊗ Vθγ ⊗ g, because θγ ∈ Vθγ ⊗ g.

From (3.8) and (3.9) we therefore get [θ12
γ , r

13(v+γ)] ∈ Vθγ ⊗g⊗g and [r12(u), θ23
γ ] ∈ g⊗Vθγ ⊗g.

If a = {x ∈ g | [x, v] ∈ V for all v ∈ V }, Lemma 2.17 implies that r(u) ∈ g⊗a and r(v+γ) ∈ a⊗g
for all u ∈ U for which u+γ ∈ U and for all v ∈ U with v+γ ∈ U . Hence, r(u) ∈ a⊗g∩g⊗a = a⊗a
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whenever u − γ, u, u + γ ∈ U . As U is an open disc with centre 0 and γ ∈ U , this condition is
satisfied for u in a small neighbourhood of 0. According to our assumption this implies a = g,
hence Vθγ ⊂ g is an ideal. As g is simple and θγ 6= 0 by definition, we get Vθγ = g, i.e. θγ is
non-degenerate.

By Lemma 2.16 we obtain [θ12
γ , θ

13
γ ] 6= 0. If r does not have a pole of order at least k at the

origin, multiplying (3.9) by vk and letting v tend to 0 gives us [θ12
γ , θ

13
γ ] = 0. Hence, r has a

pole of order l at the origin and l ≥ k ≥ 1. Therefore, we may set γ = 0 above and see that
θ = θ0 = limu→0 u

lr(u) is non-degenerate and [θ12, θ13] 6= 0.
Assume l ≥ 2, then multiplying (3.1) by ul gives the equation

[ulr12(u), r13(u+ v) + r23(v)] + ul[r13(u+ v), r23(v)] = 0 (3.10)

in which all ingredients, including ulr12(u), are holomorphic functions of u in a small
neighbourhood of 0, provided that v ∈ U is fixed and close to 0. Using (3.7) and l ≥ 2,
the derivative of (3.10) with respect to u at u = 0 evaluates as

[θ12,
(
r′(v)

)13
] + [A12, r13(v) + r23(v)] = 0

where A denotes the derivative of ulr(u) at 0. This equation holds for all v 6= 0 in a small
neighbourhood of the origin. Note that the leading term of r′(v) in its Laurent expansion is
−lθ/vl+1. If we multiply the above equation by vl+1 and let v tend to 0 we obtain [θ12,−lθ13] = 0,
in contradiction to [θ12, θ13] 6= 0. Therefore, l = 1 and so also k = 1. This proves the first part
of (B).

To find the residue of the simple pole at the origin, we consider (3.9) with γ = 0 and
the equation obtained from (3.8) with γ = 0 by applying the cyclic permutation operator
τ231(a⊗ b⊗ c) = b⊗ c⊗ a, i.e.

[θ12, r13(u) + r23(u)] = 0 and [θ12, (τr)13(u) + (τr)23(u)] = 0. (3.11)

If we define a = {x ∈ g | [ad(x), ϕ1(θ)] = 0}, by Lemma 2.18, the equations (3.11) imply
r(u), τr(u) ∈ a⊗ g, hence r(u) ∈ a⊗ g ∩ g⊗ a = a⊗ a for all u ∈ U where r is holomorphic. By
assumption this can only happen if a = g and so ϕ1(θ) = λ1g by Lemma 2.2 for some λ ∈ C.
Hence, θ = λΩ with λ ∈ C and λ 6= 0 as θ 6= 0.

(C)=⇒(D) This is obvious.

(D)=⇒(A) By assumption, limu→0 u · r(u) = λΩ, λ ∈ C∗, hence limu→0 u · ϕ1(r(u)) = λ1g,
and so limu→0 det(u · ϕ1(r(u)) 6= 0. For u 6= 0 in a small neighbourhood of the origin we obtain
det(ϕ1(r(u)) 6= 0, i.e. r(u) is non-degenerate for such u. This means that r is non-degenerate.

Proposition 3.7. Let g be simple and U ⊂ Cn an open neighbourhood of the origin. Then,
all non-degenerate meromorphic solutions r : U −→ g ⊗ g of (3.1) are unitary, i.e. satisfy
τr(u) = −r(−u).

Proof. If we replace u, v by −u and u+ v respectively, we obtain from (3.1), after applying the
swapping operator τ12(a⊗ b⊗ c) = b⊗ a⊗ c, the equation[

(τr)12(−u), r23(v)
]

+
[
(τr)12(−u), r13(u+ v)

]
+
[
r23(v), r13(u+ v)

]
.

We choose v such that r(v) is non-degenerate. If we add this to (3.1), we obtain[(
r(u) + τr(−u)

)12
, r23(v) + r13(u+ v)

]
= 0.
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We replace v by tv with t ∈ C, multiply the above expression by t and take the limit if t
approaches 0. Because r, restricted to the one-dimensional subspace 〈v〉 ⊂ Cn, has (by Theorem
3.6) a simple pole at the origin with residue λΩ 6= 0, we obtain[(

r(u) + τr(−u)
)12
, λΩ23

]
= 0.

The claim follows now from Corollary 2.15 (d).

4. The Classification Theorem of Belavin and Drinfeld
The purpose of this section is to prove the main classification result of Belavin and Drinfeld,
Theorem 4.8. The proof presented here is a reformulation of the original proof in [2], with
some details filled in. We have benefited from other versions of this proof in [4], [7] and [9].
Throughout this section, g denotes a finite-dimensional simple complex Lie algebra.

Definition 4.1. Two meromorphic functions r, s : C −→ g ⊗ g are called equivalent if there
exists a holomorphic function ψ : C −→ Aut(g) such that, for all u1, u2 ∈ C

s(u1 − u2) =
(
ψ(u1)⊗ ψ(u2)

)
r(u1 − u2).

It is easy to see that s is a solution of (3.1) if and only if r is so and that s is non-degenerate
if and only if r is so. Note that, for general ψ, the right hand side may depend on (u1, u2) and
not only on the difference u1 − u2.

For the proof of the main theorem, we need to introduce birational group laws and their
relation to algebraic groups. This theory goes back to A. Weil [11]. Generalisations of his
results can be found in [1] and [5] which are written in a language more familiar nowadays.

Definition 4.2 ([5], §5.1, Def. 1). A birational group law on a scheme X over C is a rational
map P : X ×X −→ X, written as P (x, y) = x ∗ y, such that

(i) the rational maps Φ : X ×X −→ X ×X, given by Φ(x, y) = (x, x ∗ y) and Ψ : X ×X −→
X ×X, given by Ψ(x, y) = (x ∗ y, y) are birational;

(ii) P is associative, i.e. (x ∗ y) ∗ z = x ∗ (y ∗ z) whenever both sides are defined.

The birational group law P is called commutative if x∗y = y∗x whenever both sides are defined.

A typical example is a dense open subset of a group scheme. The relation to group schemes
is clarified by Weil’s Theorem which is given below. Because the neutral element and some
inverses could be missing in X, the usual requirement that such elements exist is replaced by
condition (i).

Theorem 4.3 (A. Weil [11], see also [5], §5.1, Thm. 5). Let (X,P ) be a birational group law on
a smooth separated scheme X of finite type over C. Then there exists an algebraic group G, an
open dense subscheme X ′ ⊂ X and an open dense immersion X ′ ⊂ G such that the restriction
of the group law of G coincides with P on X ′.

If P was commutative then G will also be a commutative algebraic group, because
commutativity on an open dense subset implies commutativity everywhere.

Proposition 4.4. Let g be a finite-dimensional simple complex Lie algebra, U ⊂ Cn an open
neighbourhood of the origin which is convex and invariant under the involution u 7→ −u. Let
Ũ = {(u, v) | u+v ∈ U} ⊂ U ×U and r : U −→ g⊗g be a non-degenerate meromorphic solution
of CYBE.
Then, there exist rational functions P,Q : (g⊗ g)× (g⊗ g) −→ (g⊗ g) such that

r(u+ v) = P
(
r(u), r(v)

)
for all (u, v) ∈ Ũ and

r(u− v) = Q
(
r(u), r(v)

)
for all (u,−v) ∈ Ũ .
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Proof. Let Yu,v : g ⊗ g −→ g ⊗ g ⊗ g denote the linear map which is given by Yu,v(A) =

[r12(u) − r23(v), A13]. We first show that Yu,v is injective for (u, v) in an open subset of Ũ . To

do so, we fix u0 ∈ U with (u0, u0) ∈ Ũ such that r(u0) is non-degenerate and consider the family
of linear maps tYtu0,tu0 , which depend holomorphically on t ∈ C in a small neighbourhood of
0. Without loss of generality, we may assume that the restriction of r to the one-dimensional
subspace 〈u0〉 ⊂ Cn has residue Ω at the origin. The limit of tYtu0,tu0 if t approaches 0 exists and
is then equal to the linear map which sends A ∈ g⊗ g to

[
Ω12 − Ω23, A13

]
. This map is injective

by Corollary 2.15 (e). As injectivity is an open property, there exists t0 6= 0 with (t0u0, t0u0) ∈ Ũ
such that t0Yt0u0,t0u0 and so also Yt0u0,t0u0 is injective. By the same reason, there exists an open

neighbourhood Ũ ′ ⊂ Ũ of (t0u0, t0u0) such that Yu,v is injective for all (u, v) ∈ Ũ ′.
The assumption that r satisfies CYBE is equivalent to the equation

Yu,v
(
r(u+ v)

)
= [r23(v), r12(u)].

The injectivity of Yu,v implies that r(u+ v) can be obtained by applying to the right hand side
of this equation the inverse of a certain square minor of a matrix representation of Yu,v. Because
the entries of the inverse of a square matrix are rational expressions of the entries of the original
matrix, this shows that r(u+ v) depends rationally on r(u) and r(v), provided that (u, v) ∈ Ũ ′.
This shows that, there exists a rational function P : (g ⊗ g) × (g ⊗ g) −→ (g ⊗ g) such that

r(u + v) = P
(
r(u), r(v)

)
for all (u, v) ∈ Ũ ′. Tracing this argument backwards, we see that the

function r satisfies CYBE for (u, v) ∈ Ũ ′ if and only if r(u+ v) = P
(
r(u), r(v)

)
for (u, v) ∈ Ũ ′.

The meromorphic function f(u, v) = r(u+ v)−P
(
r(u), r(v)

)
is defined on Ũ and identically

zero on the open subset Ũ ′. As U was assumed to be convex, Ũ is connected and so f vanishes
identically on Ũ . This proves r(u+ v) = P

(
r(u), r(v)

)
for all (u, v) ∈ Ũ .

From Proposition 3.7 we know that r is unitary, i.e. r(−v) = −τr(v). As τ is linear,

Q(A,B) = P (A,−τB) is rational again. If (u,−v) ∈ Ũ , we have u, v ∈ U and r(u − v) =
P
(
r(u), r(−v)

)
= P

(
r(u),−τr(v)

)
= Q

(
r(u), r(v)

)
as required.

Corollary 4.5. If g is a finite-dimensional simple complex Lie algebra, U ⊂ C an open disc
with centre 0 and r : U −→ g ⊗ g a non-degenerate meromorphic solution of CYBE, then r
extends to a meromorphic function r : C −→ g⊗ g.

Proof. For any disc D(0, ρ) ⊂ C we say that r satisfies CYBE on D(0, ρ), if (3.1) is satisfied for

all (u, v) ∈ D̃(0, ρ) := {(u, v) | u, v, u+ v ∈ D(0, ρ)} ⊂ C2. Fix ε > 0 such that D(0, ε) ⊂ U , for
exampleD(0, ε) = U . If ρ > ε and r extends to a meromorphic function r : D(0, ρ) −→ g⊗g, then
r satisfies CYBE on D(0, ρ). This follows from the Identity Theorem because the meromorphic

function, which is the left hand side of CYBE, vanishes identically on the open subset D̃(0, ε)

of D̃(0, ρ), hence vanishes on D̃(0, ρ) as well.
Assume that r does not extend to a meromorphic function on C. Then there exists a real

number ρ ≥ ε such that r extends to D(0, ρ) but not to D(0, ρ+ ε). For each fixed v ∈ D(0, ε)
we define a meromorphic function s : D(v, ρ) −→ g⊗g on the disc with centre v and radius ρ by
s(u) = P

(
r(u−v), r(v)

)
, where P is the rational function from Proposition 4.4 for which we have

r(u) = P
(
r(u−v), r(v)

)
whenever u, v, u−v ∈ D(0, ρ). Hence the two functions r and s coincide

on D(0, ρ)∩D(v, ρ). Therefore, s defines a meromorphic extension of r to D(0, ρ)∪D(v, ρ). If we
vary v ∈ D(0, ε) we obtain an extension of r to D(0, ρ+ ε) =

⋃
v∈D(0,ε)D(v, ρ) in contradiction

to our assumption. Therefore r extends to the whole complex plane.

Proposition 4.6. The set of poles Γ ⊂ C of a meromorphic non-degenerate solution r : C −→
g⊗ g of (3.1) is a discrete subgroup and there exists a homomorphism Γ −→ Aut(g) sending γ
to Aγ such that r(u+ γ) = (Aγ ⊗ 1g)r(u) for all u ∈ C and γ ∈ Γ.
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Proof. As the set of poles of a meromorphic function is always discrete, we only need to show
that Γ is a subgroup. By Theorem 3.6, 0 ∈ Γ and all poles of r are simple. After rescaling,
we are able to assume that the residue at the origin is equal to the Casimir element Ω. Let θγ
denote the residue of r at γ ∈ Γ. Then Aγ := ϕ1(θγ) : g −→ g is a non-zero linear map. As
before, we use the abbreviation Tu = ϕ1(r(u)). Because r is unitary by Proposition 3.7, we have
Tγ = −T ∗−γ , hence γ ∈ Γ implies −γ ∈ Γ. If we multiply (3.1) by (u− γ) and take the limit if u
approaches γ, we obtain the equation[

θ12
γ , r

13(v + γ) + r23(v)
]

= 0. (4.1)

After multiplying it by v and letting v tend to 0, we get
[
θ12
γ , θ

13
γ + Ω23

]
= 0.Applying the map ϕ2

and using Proposition 2.14, this equation is seen to be equivalent to [Aγ(x), Aγ(y)] = Aγ [x, y] for
all x, y ∈ g. This means that Aγ is a homomorphism of Lie algebras. It is even an isomorphism,
as g is simple and Aγ 6= 0. Now we apply ϕ2 to (4.1) and use Proposition 2.14 to obtain

0 = [Aγ(x), Tv+γ(y)]−Aγ [x, Tv(y)] = [Aγ(x), Tv+γ(y)]− [Aγ(x), AγTv(y)]

for all x, y ∈ g. Because Aγ is surjective, this implies Tv+γ = Aγ ◦ Tv for all v ∈ C, which is, by
Lemma 2.4, equivalent to the desired equality r(v + γ) = (Aγ ⊗ 1g)r(v). Hence, if v ∈ Γ then
v + γ ∈ Γ and Γ is closed under addition.

Using v ∈ C with invertible Tv, we see that Aγ1+γ2 = Aγ1 ◦Aγ2 which concludes the proof.

Lemma 4.7. Let R : Cn −→ g ⊗ g be a non-degenerate meromorphic function which satisfies
(3.1) with u, v ∈ Cn. Then there exists a vector space V ⊂ Cn of codimension 1 such that for all
e, e′ ∈ Cn \ {0} with e′ − e ∈ V , the functions r(u) = R(ue) and r′(u) = R(ue′) are equivalent.

Proof. We write R(z) = Y (z)/f(z) with Y : Cn −→ g ⊗ g and f : Cn −→ C holomorphic such

that S = {z ∈ Cn | f(z) = 0, Y (z) 6= 0} is not empty. The set S̃ of poles of R contains S,
but might not coincide with it. We shall first show that there exist maps Φ : S −→ Aut(g) and
λ : S −→ C∗ such that for all z ∈ Cn, h ∈ S

Y (h) = λ(h) · (Φ(h)⊗ 1g) (Ω) (4.2)

R(z + h) =
(
Φ(h)⊗ 1g

)
R(z). (4.3)

As before, we use the abbreviation Tz = ϕ1(R(z)). Fix h ∈ S, multiply CYBE (3.1) for
R with variables u and v = z by f(u) and take the limit if u approaches h, to obtain[
Y 12(h), R13(h+ z) +R23(z)

]
= 0. By Proposition 2.14 this is equivalent to[

ϕ1(Y (h))(x), Th+z(y)
]
− ϕ1(Y (h))

[
x, Tz(y)

]
= 0 for all x, y ∈ g.

Using Proposition 2.14 (d), (e) this is seen to be equivalent to[
Y (h), Th+z(y)⊗ 1 + 1⊗ Tz(y)

]
= 0. (4.4)

Consider now g⊕ g as a subalgebra of U(g)⊗ U(g) via (a, b) 7→ a⊗ 1 + 1⊗ b. This embedding
is indeed an algebra homomorphism since [a⊗ 1, 1⊗ b] = 0. For fixed

z ∈W =
{
z
∣∣∣ z, h+ z 6∈ S̃ and Tz, Th+z are invertible

}
⊂ Cn

we let g0 ⊂ g ⊕ g be the Lie subalgebra generated by Th+z(y) ⊗ 1 + 1 ⊗ Tz(y) for all y ∈ g.
The two projections g⊕ g −→ g induce Lie-algebra homomorphism pi : g0 −→ g, i = 1, 2 which
are surjective because z ∈ W . As g is simple, the kernel ker(p2) = g0 ∩ (g ⊕ 0) ⊂ g ⊕ 0 ∼= g
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is either g ⊕ 0 or 0. If ker(p2) = g ⊕ 0, the dimension formula implies g0 = g ⊕ g and so,
in particular, y ⊗ 1 ∈ g0. The definition of g0 and equation (4.4) imply that [Y (h), A] = 0
for all A ∈ g0, hence [Y (h), y ⊗ 1] = 0 for all y ∈ g. But then, by Proposition 2.14 (d),
0 = ϕ1

(
[Y (h), y ⊗ 1]

)
(x) =

[
ϕ1(Y (h))(x), y

]
for all x, y ∈ g. As g in not abelian, this is only

possible if Y (h) = 0 in contradiction to h ∈ S. This shows that ker(p2) = 0 and p2 : g0 −→ g
is an isomorphism of Lie algebras. Let Φ(h, z) = p1 ◦ p−1

2 ∈ Aut(g), then each element of g0

can be written as (Φ(h, z)(x), x) ∈ g ⊕ g. If we apply this to the generators of g0 we obtain
Th+z = Φ(h, z) ◦ Tz, which is equivalent to

R(h+ z) =
(
Φ(h, z)⊗ 1g

)
R(z). (4.5)

If we plug this in (4.4), we get
[
Y (h), (Φ(h, z) ◦ Tz) (y)⊗ 1 + 1⊗ Tz(y)

]
= 0. Because Φ(h, z) is

a Lie-algebra isomorphism, this is equivalent to[(
Φ(h, z)−1 ⊗ 1g

)
Y (h), Tz(y)⊗ 1 + 1⊗ Tz(y)

]
= 0.

With the aid of Proposition 2.14 (d), (e) this translates into [ϕ1(B)(x), Tz(y)]−ϕ1(B) [x, Tz(y)] =
0 for all x, y ∈ g, where we have set B =

(
Φ(h, z)−1 ⊗ 1g

)
Y (h). As Tz is surjective,

this is equivalent to [ad(y), ϕ1(B)] = 0 for all y ∈ g. Lemma 2.2 implies now ϕ1(B) ∈
C · 1g. As Y (h) 6= 0, this shows that there exists a non-zero number λ(h, z) such that(
Φ(h, z)−1 ⊗ 1g

)
Y (h) = λ(h, z)Ω, i.e.

Y (h) = λ(h, z) · (Φ(h, z)⊗ 1g) (Ω). (4.6)

This is equivalent to ϕ1(Y (h)) = λ(h, z) · Φ(h, z). As the left hand side does not depend on z
and there is only one multiple of the linear map ϕ1(Y (h)) which is a Lie-algebra homomorphism,
both λ(h, z) and Φ(h, z) are determined by Y (h) and do not depend on z. From (4.5) and (4.6)
we see that the functions λ(h) = λ(h, z) and Φ(h) = Φ(h, z) satisfy (4.2) and (4.3) for all z ∈W
and h ∈ S. As W is dense in Cn these two equations will be satisfied for all z ∈ Cn.

Next, we show that there exists a vector space V ⊂ Cn of codimension 1 and a holomorphic
homomorphism of groups Φ : V −→ Aut(g) such that for all z ∈ Cn, h ∈ V

R(z + h) =
(
Φ(h)⊗ 1g

)
R(z) (4.7)

R(z) =
(
Φ(h)⊗ Φ(h)

)
R(z). (4.8)

To find the subspace V we denote by H the subgroup of Cn which is generated by S. Because
of (4.3), which is equivalent to Th+z = Φ(h) ◦ Tz, we can extend Φ to a homomorphism
Φ : H −→ Aut(g) which satisfies (4.3) for all z ∈ Cn and h ∈ H. From Th+z = Φ(h) ◦ Tz
we see that the set S̃ of poles of R is invariant under H, hence H 6= Cn. Because H contains
the analytic subset S of codimension one in Cn, this group contains a codimension one linear
subspace V ⊂ Cn.

To see that Φ : V −→ Aut(g) is holomorphic, we recall that R was assumed to be non-
degenerate. This implies that for each h0 ∈ V the set which consist of those z ∈ Cn for which R
is holomorphic and non-degenerate at h0 + z, is open and dense in Cn. Hence, for each h0 ∈ V
there exists z0 ∈ Cn such that R is holomorphic at z0 and at h0 + z0 and Tz0 is an isomorphism.
Because Φ(h) = Th+z0 ◦ T−1

z0 , we see now that Φ is holomorphic in a neighbourhood of h0 ∈ V .
To show equation (4.8), we recall that R is unitary by Proposition 3.7. This means that

T ∗z = −Tz. Equation (4.7) implies T−z = Φ(h) ◦ T−z−h and Tz+h = Φ(h) ◦ Tz, hence

Tz = −T ∗−z = −T ∗−z−h ◦ Φ(h)∗ = Tz+h ◦ Φ(h)∗ = Φ(h) ◦ Tz ◦ Φ(h)∗,

which is equivalent to (4.8) by Lemma 2.4.
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Finally, let h = (u1 − u2)(e′ − e) ∈ V for given u1, u2 ∈ C. With z = (u1 − u2)e, equation
(4.7) implies r′(u1−u2) = R(h+ z) =

(
Φ(h)⊗1g

)
R(z) =

(
Φ
(
(u1−u2)(e′−e)

)
⊗1g

)
r(u1−u2).

From equation (4.8) we obtain r(u1− u2) =
(
Φ
(
u2(e′− e)

)
⊗Φ

(
u2(e′− e)

))
r(u1− u2) and as Φ

is a homomorphism, we have Φ
(
(u1−u2)(e′− e)

)
= Φ

(
u1(e′− e)

)
◦Φ
(
u2(e′− e)

)−1
. Therefore,

r′(u1 − u2) =
(
Φ
(
u1(e′ − e)

)
⊗ Φ

(
u2(e′ − e)

))
r(u1 − u2), i.e. r and r′ are equivalent.

Theorem 4.8 (Belavin-Drinfeld). Let r : C −→ g⊗g be a non-degenerate meromorphic solution
of (3.1) and Γ ⊂ C its lattice of poles. Then exactly one of the following three cases occurs.

(a) If rk(Γ) = 2, r is elliptic, i.e. it has two periods that are independent over R and are
contained in Γ.

(b) If rk(Γ) = 1, there exists a rational function f : C −→ g⊗g and a constant λ ∈ C such that
the function u 7→ f(eλu) is equivalent to r. Such solutions are called trigonometric.

(c) If rk(Γ) = 0, there exists a rational function f : C −→ g⊗ g which is equivalent to r. Such
solutions f are called rational.

Proof. Let X0 = {r(u) | u ∈ C \ Γ} ⊂ g ⊗ g and denote by X ⊂ g ⊗ g the closure of X0 in
the Zariski topology. This means that X is the smallest subset of the vector space g⊗ g which
contains X0 and which is the zero set of finitely many polynomials. As r is meromorphic and
not necessarily rational, the dimension of X could be larger than one. Let now P,Q be rational
functions as in Proposition 4.4. Because P (x, y) ∈ X0 for x, y ∈ X0, the restriction of P is a
rational map X×X −→ X. Because r(u+v) = P

(
r(u), r(v)

)
for all u, v ∈ C and addition on C

is associative and commutative, we obtain P (x, y) = P (y, x) and P (x, P (y, z)) = P (P (x, y), z)
for all x, y, z ∈ X0. As the set where two rational functions coincide is Zariski-closed, these two
identities hold for all x, y, z ∈ X where they are defined.

The only thing left to verify that (X,P ) is a birational group law is the birationality of the
maps Φ and Ψ from Definition 4.2. We use the rational map Q from Proposition 4.4 to define an
inverse of Φ on X0×X0 by (x, z) 7→ (x,Q(z, x)). Similarly, an inverse of Ψ on X0×X0 is given
by (z, y) 7→ (Q(z, y), y). Using the same argument as before, these maps are rational inverses of
Φ and Ψ respectively on X ×X, hence these two maps are birational.

By Weil’s Theorem 4.3, there exists an algebraic group G and a birational map ψ : X → G
under which the group law of G corresponds to P . Denote by f : C→ G the meromorphic map
ψ ◦ r and by R̃ : G −→ g⊗ g the rational map ψ−1 followed by the embedding of X into g⊗ g.

As (X,P ) was commutative, G is a commutative algebraic group. By Chevalley’s Theorem,
the group G is an extension of an abelian variety by a finite product of additive and multiplicative
groups, see for example [5, §9.2, Thms. 1, 2] and [8, Ch. IV, §3, no. 6]. This implies that the

variety G is isomorphic to Ca×(C∗)b×A, where A is an abelian variety. Therefore, the universal
covering of G is a vector space Cn, with n = a+ b+ dim(A). If π : Cn −→ G denotes a covering
map which is a homomorphism of groups, we obtain the following commutative diagram

Cn

π
��

R

%%

C f
//

r

$$

f̄
::

G
R̃ // g⊗ g

X

ψ

OO 99

in which f̄ is the unique lift of f . By definition, f is a homomorphism of groups, and therefore
f̄ as well. This implies that there exists e ∈ Cn such that f̄(u) = ue. The commutativity
of the diagram implies now r(u) = R(ue). Because addition on an open dense subset of Cn
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corresponds to P under ψ−1 ◦ π, we have R(e + e′) = P (R(e), R(e′)) for all e, e′ ∈ Cn. From
the proof of Proposition 4.4 we see that this implies that R satisfies (3.1) with u, v ∈ Cn and so
we can apply Lemma 4.7. By V ⊂ Cn we denote a hyperplane which satisfies the conditions of
Lemma 4.7.

We choose a basis e1, e2, . . . , en of Cn such that π maps Wrat = 〈e1, . . . , ea〉 isomorphically

onto Ca and Wtrig = 〈ea+1, . . . , ea+b〉 onto (C∗)b in such a way that π
(∑a+b

k=a+1 xkek

)
=(

exp(xa+1), . . . , exp(xa+b)
)
∈ (C∗)b. Let W = Wrat ⊕Wtrig and Γ̃ = π−1(0) be the full period

lattice of the quotient map. Then Γ̃k = Γ̃ ∩ 〈ek〉 is equal to zero if k ≤ a and equal to the
free abelian group 2πiZek of rank 1 if a < k ≤ a + b. This is the full lattice of periods of the
function rk(u) = R(uek). Moreover, if k ≤ a + b, Gk = 〈ek〉/Γ̃k ⊂ G is one of the additive or
multiplicative subgroups, in particular it is a closed subvariety of G.

Let γ1, . . . , γ2m ∈ Γ̃, m = n− a− b = dim(A), be such that A is the quotient of Cn/W under
the lattice of maximal rank generated by the images γ1, . . . , γ2m of γ1, . . . , γ2m in Cn/W . Then

Γ̃ = (2πiZ)b ⊕ 〈γ1, . . . , γ2m〉. Let λj ∈ C be determined by γj − λje ∈ V . As the set of poles of
R is invariant under V (see Lemma 4.7), we have λj ∈ Γ.

If W ⊂ V , then the images of γ1, . . . , γ2m under the surjection Cn → Cn/W → Cn/V generate
a lattice of maximal rank. The one-dimensional subspace 〈e〉 maps isomorphically onto Cn/V
and the image of λje coincides with the image of γj . Hence, the assumption W ⊂ V implies
rk(Γ) = 2.

If rk(Γ) < 2 we, therefore, find ek 6∈ V with 1 ≤ k ≤ a+b and there exists a non-zero constant
λ such that e − λek ∈ V , hence rk(λu) and r(u) are equivalent by Lemma 4.7. This implies
that both functions have the same set of poles, which is a discrete subgroup by Proposition 4.6.
As the rational function r̃k = R̃|Gk has only finitely many poles, the poles and the periods of

rk(λu) have to be lattices of the same rank, that is rk Γ̃k = rk Γ. Hence, if rk Γ = 1, ek ∈ Wtrig

and rk(λu) is a rational function of exp(λu) and in the case rk Γ = 0 we have ek ∈ Wrat and
rk(λu) is a rational function.

If rk Γ = 2 we cannot argue in the same way, because it is not clear that we can find a
one-dimensional subspace, not contained in W , which contains two independent elements of the
lattice 〈γ1, . . . , γ2m〉. Instead we use the homomorphism Γ −→ Aut(g) from Proposition 4.6
sending γ to Aγ and prove directly that r is an elliptic function.

If the image Γ′ ⊂ Aut(g) of this homomorphism was infinite, the smallest algebraic subgroup

Γ
′

of Aut(g) which contains Γ′ would be commutative and of positive dimension. Therefore, its
Lie algebra, which is a commutative subalgebra of g, contains a non-zero element a. For this
element we have Aγ(a) = a for all γ ∈ Γ. Let f : C −→ g be the meromorphic map given by
f(u) = T ∗u (a), where Tu = ϕ1(r(u)). We have f(u + γ) = T ∗u+γ(a) = T ∗uA

∗
γ(a) = T ∗u (a) = f(u),

because Tu+γ = Aγ ◦ Tu and A∗γ = A−1
γ = A−γ (Proposition 4.6). This means that f is Γ-

periodic. But f has a simple pole at each point of Γ and no other poles, which is impossible for
a doubly periodic function. This contradiction shows that Γ′ is a finite group.

Let γ1, γ2 be generators of Γ. Then Aγ1 , Aγ2 are both of finite order ni = ord (Aγi). From
Tu+γ = Aγ ◦ Tu we obtain that Tu+n1γ1 = Tu = Tu+n2γ2 and this means that Tu and so also r is
an elliptic (doubly periodic with periods n1γ1, n2γ2) function.
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