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Abstract 

 

 

Surface waters draining peat catchments often have a characteristic brown colour due to 

the presence of dissolved organic carbon (DOC) compounds. A rise in DOC 

concentrations has been documented in rivers and lakes in various parts of Europe and 

North America over the last few decades. The processes responsible for the increased 

DOC load are complex and not entirely understood, but it is obvious that this change 

could be indicative of decreased terrestrial storage of carbon, which has important 

consequences for aquatic ecology and drinking water quality.  

 

This thesis applies contemporary or neo- and palaeolimnological approaches at different 

temporal and spatial scales in a humic and clearwater lake in the west of Ireland (Lough 

Feeagh, Co. Mayo and Lough Guitane, Co. Kerry). An investigation of contemporary 

auto- (pico- and phytoplankton), mixo- (phytoflagellates) and heterotrophic (bacteria 

and ciliates) communities was fundamental to this research. The results confirmed that 

higher loads in suspended solids, and thus a darker water colour, which had a direct 

effect on light attenuation, depressed autotrophic biomass and simultaneously 

stimulated heterotrophic bacteria and potentially mixotrophic phytoflagellates. A 

heterotrophic base for total organic production served as an energy and carbon source. 

A flash-flood in July 2009 caused an increase in Cryptophyta and bacteria.  In contrast, 

the clear water lake was characterized by lower DOC levels and deeper Secchi depths 

and thus, more light availability, favouring the autotrophic community and extending 

the growing season.  

 

Sediment traps installed in three locations within each lake showed contrasting seasonal 

and inter-annual dynamics of lithological, geochemical and biological variables. C/N 

ratios reflected a mixture of algal and land-derived organic matter with a major peaty 

influence in the humic lake. The comparison of the open water phytoplankton 

community and diatom assemblages with sediment trap fossil pigment and diatom 

assemblages showed a close agreement and reflected a seasonal pattern. In contrast, the 



 II

comparison between sediment trap and surface sediment assemblages revealed different 

patterns. Pigment and diatom assemblages were influenced by water depth, while inter-

annual variability and/or dilution and mixing through bioturbation influenced the 

surface sediment diatoms. 

 

Lastly, sediment core lithological, geochemical and biological proxies enabled 

reconstruction of the past environment of the lakes and their surrounding catchments. 

Both lakes were characterized by contrasting water column and sediment trap responses 

and consequently their sediment core responses were different. Divergent levels of 

DOC in the two lakes contribute to different algal community structures and thus fossil 

assemblages. One of the most striking outputs was shown by an index of ultraviolet 

radiation penetration that gave an indirect indication of dissolved organic matter (DOM) 

present in the water column. A decreasing trend in the humic lake indicated an increase 

in DOM in the water column over the last ca. 70 years.  This was paralleled by an 

increase in Cryptophyta known to tolerate lower light conditions and a shift in diatom 

assemblages. The trend was concurrent with extensive commercial afforestation and an 

exponential increase in sheep grazing, however climate change could also have 

contributed to the transport of suspended sediment into the lake.  
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Chapter 1 - Introduction 

 

 

1.1 General introduction and research objectives 

Dissolved organic carbon (DOC) in lacustrine environments can be derived from both 

terrestrial (allochthonous) sources or from sources produced within the aquatic 

ecosystem (autochthonous). The larger fraction of the total DOC in lakes is from 

decomposed organic matter derived from long-term terrestrial stores or peatlands. 

Natural brown coloured lakes, known also as humic, dystrophic or bog lakes (Thomas et 

al., 1996), are very common in the northern temperate zone, where extensive peat soils 

are characteristic (Dillon & Molot, 1997a; Kortelainen, 1999; Ojala et al., 2011). Long-

term observations over the last few decades show a steady increase in DOC in 

freshwaters across Europe and North America (Freeman et al., 2001a; Evans et al., 

2005; Sucker & Krause, 2010). The significance of these upward trends in DOC 

concentrations and its dynamics and influence of upon aquatic ecosystems is not 

entirely understood (Tranvik & Jansson, 2002; Roulet & Moore, 2006), but it is certain 

that they may have wide-ranging impacts on the functioning of aquatic ecosystems 

(Jones, 1992; Evans et al., 2005; Jansson et al., 2007). Organic matter also affects water 

treatment processes (e.g. trihalomethane (THM) formation) and therefore, the drinking 

water quality (Alarconherrera et al., 1994), which can have negative effects on human 

health (Janus, 2010).  

 

The transfer of carbon from terrestrial to aquatic, and finally marine ecosystems, forms 

a significant component of the global carbon cycle (Hope et al., 1994). Even small 

changes in DOC quality and quantity can have considerable significance for carbon 

cycling and have substantial ecological consequences (Cole et al., 2000; Porcal et al., 

2009), including shifts in the structure and function of food webs, especially for the 

microbial component (Jones, 1992; Sucker & Krause, 2010; Kostrzewska-Szlakowksa 

& Jasser, 2011). A number of features are shared by humic lakes: brown water colour, 

low light penetration and consequent low available light energy for primary producers, 

predominance of the red part of the light spectrum, low pH, low alkalinity, low 

conductivity together with low concentrations and reduced bio-availability of dissolved 
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inorganic nutrients (Arvola, 1984; Jones, 1998; Löfgren et al., 2003). The magnitude 

and proportion of carbon derived from allochthonous and autochthonous sources varies 

widely among different aquatic ecosystems. In highly productive eutrophic lakes, 

autochthonous production plays a fundamental role, while in more oligotrophic lakes 

allochthonous organic matter can affect the entire lake metabolism (del Giorgio et al. 

1999; Wetzel, 2001). In recent years the traditional concept of lake food webs has been 

challenged by the evidence, that in spite of their position in the landscape, many water 

bodies maybe net heterotrophic aquatic systems (Cole et al., 1994; del Giorgio et al., 

1997; Ojala et al., 2011). These systems are sources of CO2, due to the importation and 

mineralization of allochthonous organic carbon and the resultant degassing of inorganic 

carbon (Cole et al., 1994; Algesten et al., 2003; Sobek et al., 2003). A relationship 

between lake trophy and net metabolic balance has been observed, suggesting that the 

latter is more frequent in oligotrophic than in eutrophic lakes (del Giorgio & Peters, 

1994).  

 

1.1.1 European Union Directives 

The European Union Water Framework Directive (WFD) (2000/60/EC) (European 

Union, 2000a) and the Habitats Directive (92/43/ECC) (European Union, 2003b) 

formulated a legislative framework to promote: sustainable management of fresh- and 

saline waters, protect and enhance all aquatic environments, prevent future 

deterioration; achieve “good ecological status” and ensure sustainable functioning by 

2015 (European Union, 2000a).  

 

The World Health Organization (WHO) together with the European Parliament 

Environment Committee set standards for drinking water quality at the tap including the 

general obligation that drinking water must be wholesome and clean. Many lakes are 

drinking water sources, which need to be purified (removal of undesirable chemical and 

biological contaminants from raw water) for human consumption (potable water) and 

also for other purposes such as medical, pharmacological, chemical and industrial 

applications. In general, the methods used include a variety of physical (filtration, 

sedimentation) and chemical (flocculation, chlorination) processes and the use of 

electromagnetic radiation (UV-light). The processes of water treatment reduce the 

concentration of particulate matter including suspended particles, parasites, algae, fungi, 



 3!

bacteria and viruses.  The European Drinking Water Directive (1998/83/EC) has 

sharpened the enforcement of water quality norms and put particular emphasis on the 

organic matter content by restricting the maximum acceptable concentration of THMs. 

Where humic waters are used as a potable water source efforts are made to remove 

organic matter during water treatment for aesthetic reasons and because organic matter 

reacts with the oxidants (chlorine, ozone, hydrogen peroxide) during disinfection and 

produces a series of disinfection by-products (DBPs) (Rook, 1974; Reckhow & Singer, 

1990; WHO, 2005). DBPs have been associated with adverse health impacts, including 

congenital abnormalities and an increased risk of cancer (Källén & Robert, 2000; 

Nikolaou & Lekkas, 2001; WHO, 2005). The organic matter character, organic 

precursor levels and DBPs formation, nature and reactivity can be characterized by 

seasonal changes that can cause variations of the water quality over time (Uyak et al., 

2008). 

 

1.1.2 Neo- and palaeolimnology  

Contemporary aquatic ecology and palaeolimnology (lake sediment reconstructions) are 

complementary disciplines that contribute to knowledge and understanding of long-term 

lake responses (Battarbee et al., 2005a; Batterbee et al., 2005b). Generally, 

contemporary studies (physico-chemical monitoring and ecological data sets) seldom 

extend beyond 10 years and thus, cannot show how lake ecosystems change over the 

longer (decadal-centennial) timescales. Longer term datasets are essential in assessing 

lake history, providing baseline reference information and defining the timing and rate 

of ecological change (including e.g. lake development, catchment processes) (Likens, 

1979; Lotter & Bigler, 2000; Batterbee et al., 2005b; Batterbee et al., 2011). The 

combination of neo- and palaeolimnological research has provided valuable data 

(Bennion & Batterbee, 2007; Dalton et al., 2009) and can be helpful in deriving targets 

for lake restoration and conservation measures to ensure future environmental 

protection of aquatic systems (Moss et al., 1996; Köster et al., 2005).  Additionally, 

palaeolimnological and standard limnological approaches can be integrated through the 

application of sediment traps. Sediment traps are a device, which permit quantitative 

collection of particles falling through the water column and enable high resolution 

sampling at seasonal, inter-annual and/or decadal time scale, allowing an integration of 

past and present lake responses (Ryves et al., 2003; Battarbee et al., 2005a; Batterbee et 
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al., 2005b). Sediment traps enable comparisons between sedimenting matter and 

contemporary water column measurements and with basin sediment records, which 

offer a continuous long-term archive of lake history (Cameron, 1995; Bennion et al., 

2011). The combination of limnological and palaeolimnological approaches are highly 

complementary and can provide essential information in assessing lake ecosystem 

response to changes in nutrient loading and the role of several drivers and stressors, 

such as for example land-use and climate change.  

 

1.1.3 Research objectives 

The overall aim of this research is to examine the nature and fate of organic matter and 

the influence on pelagic organisms through the application of neo- and 

palaeolimnological approaches in a clear water and a humic lake in the west of Ireland. 

This aim is achieved through three main objectives: 

 

The purpose of the first part of this research was to establish the present ecological 

status of pelagic auto- (phyto- and picoplankton), potentially mixo- (phytoflagellates) 

and heterotrophic communities (bacteria and ciliates). The objective was to track 

variations in biomass production in relation to abiotic variables, to determine if 

variations in water colour and DOC input alters the relationships between the pelagic 

communities over an annual cycle.   

 

Secondly, the relationship between living lake communities in the water column and the 

records of these communities in suspended sediment traps and basin surface sediment 

are explored. Spatial and temporal variations in organic matter, total organic carbon and 

total nitrogen load, pigment concentrations and diatom assemblages are quantified in 

sediment trap samples collected over circa two years. The factors regulating spatial and 

temporal variations and their external influences are explored. 

 

Lastly, an examination of lake sediment cores permitted an extension of the timescale 

examined. By looking at sediment core responses an evaluation of change in system 

state, including past changes in primary production, algal communities and organic 

matter was achieved using palaeolimnological techniques. Parameters including fossil 

pigments, diatom assemblages, total organic carbon and total nitrogen were analysed. 
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Comparisons between lithological, geochemical and biological proxies in sediment 

cores and historical catchment and climate changes enable evaluation of potential 

drivers and pressures. This longer-term context can help determine the onset and 

magnitude of change and inform predictions of future state.  

 

1.2 Thesis Structure 

The body of this thesis is divided into eight chapters. A literature review of key classic 

and contemporary literature on the sources and role of DOC in aquatic environments, 

the importance of drinking water quality, recent rises of DOC and its potential drivers, 

along with an introduction to palaeoecological studies is presented in Chapter 2. This is 

followed by a description of the study sites in Chapter 3. Materials and methods used in 

the project are outlined in Chapter 4. The first of three results chapters is presented in 

Chapter 5 and examines the dynamics of phytoplankton, picoplankton and heterotrophic 

bacteria along with physico-chemical parameters at the two study sites. Sediment trap 

seasonal fluxes and a comparison with open water and surface sediment samples are 

detailed in Chapter 6. Sediment core reconstructions of lithological, geochemical and 

biological proxies for both lakes are contained in Chapter 7. Each result chapter 

contains a detailed discussion. Chapter 8 highlights the implications of the research and 

its the contribution to knowledge.  
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Chapter 2 - Literature review 

 

 

2.1 Introduction 

This chapter reviews the role and fate of DOC in freshwater ecosystems and its 

influence on the classification of lakes. The consequences of variation in the quantity 

and quality of organic matter for the quality of drinking water are explored. The recent 

changes in DOC concentrations in aquatic systems are outlined and potential drivers of 

these changes are explored. Finally, palaoelimnological applications are reviewed.  

 

2.2 Sources and sinks of dissolved organic carbon in aquatic 
environments 

Carbon is crucial to life on Earth and is the most actively cycled element in the 

biosphere (Sulzman, 2000). Biological processes convert organic and inorganic carbon 

into one another. For example, photosynthesizing organisms convert atmospheric 

inorganic carbon (CO2) into organic carbon and respiration converts organic carbon into 

inorganic carbon and releases it back to the atmosphere. Other inorganic carbon 

sources, such as bicarbonate (HCO3
-) and carbonate (CO3

2-), enter aquatic systems 

through ground- and surface water. Aquatic organic carbon is a component of living and 

non-living biomass and is used as an energy source for secondary aquatic production 

(Tranvik, 1988; Karlsson et al., 2003).  Organic matter can be divided into dissolved 

molecules, colloidal suspensions and particulate matter (Kronberg, 1999). DOC is the 

largest pool of organic carbon in lake water (typically > 90% of the total organic C) 

(Thurman, 1985; Wetzel, 2001). DOC has been reported to constitute 97% of the TOC 

in water of boreal lakes (Kortelainen et al., 2006). The natural range of DOC, from < 

0.5 mg L-1 to > 50 mg L-1, is enough to span the range from crystal clear to dark brown 

waters (Thurman, 1985; Kortelainen, 1999; Mulholland, 2003).  In aquatic systems 

DOC originates mainly from in-lake (internal or autochthonous DOC) and the 

surrounding terrestrial catchment (external or allochthonous DOC). A minor 

contribution is also sourced from exchanges between air and water (Wetzel & Likens, 

2000; Reche & Pace, 2002; Bertilsson & Jones, 2003; Kortelainen et al., 2006).  The 

fraction of DOC that is created from in-lake processes is mainly derived from 



 

autochthonous primary production (e.g. macrophytes, phytoplankton, picoplankton). 

This photosynthetically produced carbon pool, classified as labile dissolved organic 

carbon (LDOC), constitutes circa 15% of TOC in aquatic environments (Figure 2

(Søndergaard & Borch, 1992)

growth, and as the supply of humic substances in lakes is high, they become 

quantitatively important bacterial substrates 

A small part of the LDOC fraction (0.2%) is produced photosynthetically a

as dissolved extracellular organic carbon (EOC), mainly by phytoplankton in pelagic 

areas and by macrophytes and epiphytic algae in the 

1990).  In contrast, allochthonous DOC is derived from the surrounding terrestrial plant 

matter and/or humic substances (e.g. cellulose, lignin, tannins). The latter is 

significantly processed as it passes through soil before entering

microbial and abiotic processes (e.g. decomposition and photo

plant biomass) (Wetzel, 2001; Reche & Pace, 2002)

activities can be a source of DOC, which enters the aquatic environm

discharge from industrial, agricultural and domestic activity 

indirect leaching of soil organic matter and aerial dispersal 

et al., 2007).  

Figure 2.1 – Approximation of the different fractions of the total organic carbon pool in aquatic 
systems composed of particulate/colloidal 
carbon (LDOC) and refractory dissolved organic carbon (RDOC) (modified from 
2004; page 7). 
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The term organic carbon covers a range of substrates. The dissolved organic fraction is 

defined as the carbon concentration of water passing through a 0.2 – 0.7 µm filter 

(Thurman, 1985; Wetzel & Likens, 2000). The carbon retained on the filter constitutes 

the fraction of colloidal and particulate organic carbon (POC) fraction (McKnight et al., 

1997). POC includes both living organisms (bacteria, phytoplankton, protozoa and 

metazoa) and particulate detritus (dead organic material). The dissolved organic carbon 

fraction includes soluble organic substances variously named as coloured or refractory 

dissolved organic carbon (RDOC) or chromophoric dissolved organic matter (CDOM) 

(Münster & Chróst, 1990). In the older literature it is termed as gilvin and gelbstoff or 

yellow substance. RDOM is considered to be a mixture of compounds chemically 

characterized as humic and fulvic acids and/or humus (Kirk, 1994a, 1994b; McKnight 

et al., 1997; Williamson et al., 1999). This heterogeneous mix of yellow, brown and 

even black organic compounds present in all natural waters impact the chemistry and 

biology of water (WHO, 2005; Hudson et al., 2007). RDOM accounts for 75% of the 

DOC in aquatic environments, which is not easily broken down by bacteria and is 

composed of non-humic and humic components. Non-humic components are insoluble 

in aqueous systems and are formed by aromatic and aliphatic hydrocarbons, esters, 

acids, and even relatively polar structures of microbial origin, such as polysaccharides 

and glycoproteins (Hayes, 2001). Humic compounds are mostly generated by the partial 

decomposition of, or exudation from, living plants and animals and soil 

microorganisms. The organic matter formed by these processes may be stored in the soil 

for varying lengths of time (e.g. as peat) before decomposition processes render a part 

of this material soluble. Humic compounds can be sub-divided into three categories, 

humic and fulvic acids and humins, chemically defined by solubility at different pHs. 

 

In aquatic systems the main sinks of organic matter are in situ microbial activity and 

mineralization, flocculation, coagulation and sedimentation. The microbial utilization of 

carbon provides an energy source for the food web (Tranvik, 1989; Pace et al., 2004), 

resulting in a net flow of CO2 from lakes to the atmosphere (Cole et al., 1994). Small 

lakes in particular are considered to be hot spots of carbon metabolism (Cole et al., 

2007). Flocculation, coagulation and sedimentation of organic matter in the water 

column and its sequestration into the bottom sediments are additional pathways (Molot 

& Dillon, 1996; Einsele et al., 2001; von Wachenfeldt et al., 2008b). Storage in lake 

sediments has been estimated to be a major carbon sink in boreal areas (Arvola et al., 
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2002; Kortelainen et al., 2004). Finally, roughly half of the organic matter may be 

exported by stream transport to the sea (Baker & Spencer, 2004; Cole et al., 2007). 

 

2.3 Classification of lakes 

Despite early recognition of the importance of allochthonous organic carbon 

(Thienemann, 1921; Birge & Juday, 1927; Naumann, 1929) many limnologists 

excluded DOC as a parameter (Jones, 1992). Rohde (1969) tried to incorporate the 

concept of dystrophy into the established nutrient-based classification system defined 

by Vollenweider (1968). Rohde’s concept was based on a scheme with lake types 

divided along two gradients: a gradient of autotrophy where lakes went from oligo- to 

eutrophic, a gradient of allotrophy where lakes went from oligo- to dystrophic and an 

intermediate group of mixotrophic lakes with auto- and allotrophic conditions. The role 

of DOC in lakes was largely eclipsed by the chlorophyll-phosphorus relationship and 

research on the control of eutrophication of lakes formed the basis of many management 

programs in aquatic systems (Vollenweid!"#$%&'()$*+,,-.$/$0+1,!"#$%&23)$4-,,!.5!+6!"$

/$7!"!8!9#$%&(:)$;< rnberg, 1996; Schindler, 2006). This research focused mostly on 

in situ primary production, which is measured via planktonic chlorophyll, total 

phosphorus and water transparency in lake water (Carlson, 1977; OECD, 1982). Four 

distinct trophic state levels (oligo-, meso-, eu- and hyper-eutrophic) were determined 

from summer epilimnetic nutrient, chlorophyll (chl) concentration and Secchi disk 

transparency =;< rnberg, 1996). The OECD classification was subsequently modified 

in Ireland because the usual frequency of sampling of lakes did not generate sufficient 

data to permit calculation of the annual mean values as specified in the OECD scheme. 

For this reason, the Irish EPA use a modified, less statistically reliable (Irvine et al., 

2001), trophic classification scheme based on the annual maximum chlorophyll 

concentration (Toner et al., 2005).   

 

While many lake studies concentrated on nutrient state and trophic classification some 

notable publications also incorporated examination of DOC. Studies by Wetzel (1983), 

Häkanson & Jansson (1983) and Thurman (1985) were seminal publications. Häkanson 

& Jansson (1983) modified Rodhe’s scheme (1969) relating it to autotrophic production 

and allotrophic inputs of organic matter, suggesting that dystrophic lakes are rich in 

humic materials and are generally low in internal autotrophy carbon production. 



 

Thurman (1985) proposed four trophic states based solely on DOC concentrations of 

lakes (Table 2.1) and showed that DOC varies with the productivity of the lake and 

increases with trophic status. Coincidentally an increasing understanding of the r

microbial cycling of detrital organic matter (Pomeroy, 1974; Azam 

& Laird, 1987) helped to resurrect interest in defining how allochthonous organic 

carbon supports both the microbial and metazoan food webs in lakes 

 

Table 2.1 - DOC of lakes of various trophic 

Trophic State 
Dystrophic 
Oligotrophic 
Mesotrophic  
Eutrophic  
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Figure 2.2 – Classification of trophic state according to CDOC and TP (from Williamson 
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Finland Pilke et al. (2002) divided lakes with a surface area > 40 km2 and a mean depth 

> 3 m into two types: oligohumic (water colour <30 mg Pt/Co L-1), and humic (water 

colour 30 – 90 mg Pt/Co L-1) lakes. Similarly, Lepistö et al. (2004) differentiated 

between oligohumic (water colour <60 mg Pt/Co L-1), humic (60-120 mg Pt/Co L-1) and 

dystrophic (> 120 mg Pt/Co L-1) lakes.  In fulfilment of WFD requirements working 

groups for intercalibration and benchmarking were set up in recognition of the need to 

differentiate Europe into different Geographical Intercalibration Groups (GIG) 

characterized by specific descriptors (Poikane, 2009). Ireland now contributes to two 

geographical groups: the Northern (country members: parts of Finland, Sweden, 

Norway, UK, Ireland) and the Atlantic GIG (parts of the UK and Ireland). The Northern 

GIG identified seven lake types characterized by five descriptors, namely lake size, 

altitude, lake mean depth, alkalinity and water colour, while the Atlantic GIG includes 

lake size, altitude, mean depth and alkalinity and excludes water colour. Thus, the WFD 

now explicitly recognises the role of colour in the geography of northern Europe. 

 

2.4 The role of DOC in aquatic ecosystems 

Particulate and especially DOC from auto- and allochthonous sources regulate the 

material and energy fluxes in lake ecosystems. Any change in DOC concentration has 

an impact on physical, chemical and biological behaviour of the aquatic system. It is 

important to note that the effects of DOC are inter-linked.  

 

2.4.1 Physical effects  

2.4.1.1 Effect of DOC on lake thermal properties 

DOC is strongly related to light penetration in aquatic ecosystems and has a direct 

impact on the heat absorption of humic material, which is linked to thermocline depth, 

and thus, to the mixing depth of lakes (Williamson et al., 1999; Hudson et al., 2003; 

Maloney et al., 2005). Thermal stratification in clear lakes develops slower in spring 

than in humic lakes (Bowling & Salonen, 1990). The establishment of the thermocline 

in the uppermost water layers, consequently results in steeper and shallower thermal 

gradients characterized by increased stability (Salonen, 1984; Jones, 1992). Fee et al. 

(1996) found a positive correlation between lake size and light transmission. Surface 

area represents the most important determinant in epilimnetic depth in lakes > 500 ha. 
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In contrast, in small lakes (surface area < 500 ha) water transparency is a more relevant 

factor than surface area (Perez-Fuentetaja et al., 1999; Snucins & Gunn, 2000).  

 

2.4.1.2 Attenuation of solar radiation 

The transparency of water is determined by the relative light penetration and is 

measured by calculating the ratio between the irradiance observed at a given depth and 

that recorded at the water surface. Transparency, frequently estimated as Secchi disc 

depth, is used to define the euphotic depth and marks the lower boundary of the layer in 

which net photosynthetic production is possible (Håkanson & Peters, 1995). This 

corresponds to approximately 1% of full daylight (wavelengths of 400-750 nm) and is 

also referred as attenuation depth of photosynthetically active radiation (PAR). In humic 

lakes the euphotic zone can generally be equated with Secchi disc visibility (Arvola et 

al., 1999a). In humic lakes the depth of PAR is strongly attenuated. The red part of the 

light spectrum is dominant, due to the presence of humic substances and thus, the 

illuminated water layer is shallower than in clearwater lakes (Kirk, 1994a).  

 

While the zone of photosynthesis and the euphotic zone are not synonymous, they often 

coincide. The illuminated layer corresponds to the photic zone, while the non-

illuminated layer is called aphotic zone and the twilight layer between them is termed 

the dysphotic zone (Arvola et al., 1999a). In the most transparent oligotrophic lakes, the 

euphotic zone extends to depths > 10 m (Jones, 1992) and in some cases it may extend 

up to 30-50 m depth (Snucins & Gunn, 2000). In contrast, in humic lakes with DOC 

concentrations of 10-15 mg L-1 the euphotic zone is between 1 and 2 m deep, while in 

highly humic lakes (DOC > 15 mg L-1) it rarely exceeds one metre (Jones, 1992; Lindell 

et al., 1996; Löfgren et al., 2003). The presence of DOM in water impacts on the 

biological and chemical behaviour of the water body by absorbing radiant light from the 

water column, decreasing that available for photosynthesis (Ferrari et al., 1996) 

 

2.4.2 Chemical effects  

2.4.2.1 Acidification and oxygen depletion 

Lake water acidification has been attributed to natural and anthropogenic drivers 

(Schindler, 1996a; Williamson et al., 1999). Acidification of a lake occurs, for example, 

when a catchment area receives acid loading at levels such that the natural buffering 
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capacity is exceeded or when the chemical equilibrium is altered as a result of 

progressive decrease in exchangeable cations (Cresser & Edwards, 1987). When a lake 

cannot completely neutralise increasing acidity there is a net increase of H+ ions. This 

process is known as acidification. In general, humic substances are a natural source of 

acidity in inland waters (Steinberg, 1991). High concentrations of DOC compounds 

contribute to the naturally low pH (Kortelainen & Mannio, 1990; Lydersen, 1998). 

Transient increases in DOC concentration cause a pH decline in surface waters (Laudon 

et al., 2001) or show no correlation (Worrall & Burt, 2004d). Other studies have 

documented increased water transparency (associated with declines in DOC and colour 

and increased penetration of UV radiation) with increases in surface water acidity 

(Gjessing, 1992; Leavitt et al., 1997).  

 

DOC concentration influences the rate of oxygen depletion in lakes through 

photochemical oxidation of the organic material (Lindell & Rai, 1994) and can reduce 

the maximum depths of oxygenation and, therefore, contribute to hypolimnion anoxia 

and have impacts upon aquatic life (Baker & Spencer, 2004).  

 

2.4.2.2 Nutrient availability and reduced toxicity of metals 

DOC serves also as a carrier for nutrients and thus, influences their concentrations and 

bioavailability (Jones, 1998; Perdue, 1998; Shaw, 2000). Nitrogen (N) is the most 

common limiting nutrient in terrestrial forest ecosystems in temperate regions. The 

export of inorganic N to aquatic habitats is therefore small and the bulk of dissolved N 

is bound in humic substances (Jansson et al., 1996). Total N (TN) concentrations in 

temperate brown water lakes are typically 300-500 µg L-1, while inorganic N fractions 

are close to detection limits (Stepanauskas et al., 1999). Total phosphorus (TP) 

concentrations can be high in humic lakes (10-25 µg L-1), however most of the P binds 

with humus colloids forming iron-phosphorus-humus complexes and affecting the 

bioavailability of key limiting elements (Ohle, 1935; Tipping, 1981).  According to 

Sakamoto (1966) and Smith (1982) nitrogen to phosphorus ratios (N/P) can give an 

indication of which nutrient is limiting in an aquatic system. Lakes can be characterized 

as phosphorus limited (N/P > 17), simultaneously nitrogen and phosphorus limited (10 

< N/P ? 17) and nitrogen limited (N/P < 17).  
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DOC also binds and transports pollutants, toxic organics and metals (aluminium, iron, 

chromium, lead, mercury) and radionuclides, and thereby, reduces their dissolved 

concentrations and bioavailability to aquatic biota (Francko, 1986; Tessier, 1992; 

Perdue, 1998; Shaw, 2000). Humic substances also bind with contaminants, including 

the known carcinogen benzopyrene (a product of combustion) and various pesticides, 

and are capable of altering their chemical reactivity and of reducing their toxicity and 

bioaccumulation (Oris et al., 1990; Gensemer et al., 1999; Akkanen et al., 2004).  

 

2.4.3 Biological effects  

It is well known that lake ecosystems have two main sources of energy: autotrophic 

phyto- and picoplankton, that use light as their energy input, and heterotrophic bacteria, 

that exploit the organic matter available in the water column (Jones, 1992; Salonen, 

1992a; Pace et al., 2004; Carpenter et al., 2005; Jones, 2005; Cole et al., 2006). These 

authors recognized that bacteria are not only involved in a microbial loop within a 

pelagic ecosystem, but also form a link between external primary producers and the 

pelagic food web. Consequently, both communities are characterized by similar 

functional roles and both supply higher trophic levels with energy, whether via a 

physical (light) or a chemical form (DOM). A considerable part of the bacterial 

production in lakes may be channelized toward higher trophic levels via micrograzers 

(Kankaala et al., 1996; Isaksson et al., 1999; Jansson et al., 1999), such as hetero- and 

mixotrophic flagellates (Isaksson, 1998; Isaksson et al., 1999), ciliates (Sanders et al., 

1989; Hessen et al., 1990; Havens, 1991; Carrias et al., 1996), rotifers (Arndt, 1993) 

and cladocerans (Hessen, 1998). Finally, some of the carbon passing up the food chain 

will be returned to the carbon pool by excretion (Jones, 1992). 

 

Whether auto- or heterotrophic production dominates in aquatic ecosystems has 

fundamental consequences for carbon processing (Bass et al., 2010). Net autotrophic 

systems will be sinks for atmospheric CO2, while net heterotrophic systems will egress 

CO2 to the atmosphere (Cole et al., 1994; del Giorgio et al., 1999; Ojala et al., 2011). In 

lakes the balance between the two is variable and dependent on several factors, 

including trophic level (Biddanda et al., 2001) and DOC concentration (Blomqvist et 

al., 2001). Generally, eutrophic systems are dominated by autotrophic processes, while 

oligotrophic systems are dominated by heterotrophic processes (Sobek et al., 2005). 
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However, both net heterotrophy and net autotrophy have been documented in 

oligotrophic aquatic systems (del Giorgio et al., 1999; Carignan et al., 2000). 

Consequently, bacterial production and respiration in humic lakes is frequently higher 

than the authochthonous primary production, even in the euphotic zone during summer 

(Salonen, 1984, 1992a; Drakare et al., 2002). Jansson et al. (2000) suggested that the 

shift from net autotrophy to net heterotrophy might take place at concentrations of DOC 

around 5 mg L-1. Recently, Bass et al. (2010) reported that the factors affecting the 

autotrophic/heterotrophic balance are dynamic and additional factors, such as inorganic 

and organic nutrient supply, may also be influential. 

 

The following sections describe briefly the lacustrine pelagic autotrophic (phyto- and 

picoplankton), mixotrophic (phytoflagellates) and heterotrophic communities (bacteria 

and ciliates) highlighting their differences in humic and clear-water lakes. 

 

2.4.3.1 Phytoplankton 

In humic lakes phytoplankton communities are typically limited to the uppermost layers 

of the water column. The presence of humic matter indirectly affects their ability to 

develop via attenuation of the available light energy (Arvola, 1984; Lindell et al., 1996; 

Jones, 1998; Arvola et al., 1999b; Löfgren et al., 2003). Regardless of their 

characteristic physical and chemical features, algal community structure in humic lakes 

seems to be equivalent to that found in clearwater lakes (Jones, 1998; Arvola et al., 

1999b). It appears that the algal community structure is less dependent on water colour 

(the amount of humic substances) per se, but some associated features such as reduced 

nutrients levels, toxicity of metals and low pH, can influence composition and 

dominance (Jones, 1992; Jones, 1998). Phytoflagellates have been found abundant in 

humic lakes (Ilmavirta 1988, Jones 1991), because they are mobile and have the ability 

to keep and optimize their vertical distribution in the water column in accordance with 

the quantity and quality of available resources (light and nutrients) (Morgan & Kalff, 

1979; Reynolds, 1984; Salonen, 1984; Dokulil, 1988; Jansson et al., 1996). However, 

the dominance of flagellates is not a universal feature of humic lakes, because they can 

also be observed in clearwater lakes (Arvola et al., 1999b). Although humic lakes have 

no characteristic phytoplankton species composition, Cryptophyta and Chrysophyta 

commonly contribute to high biomass (Jones, 1998; Arvola et al., 1999b).  
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Phytoflagellates obtain carbon via auto- and/or mixotrophy. (Jones, 1994; Jansson et al., 

2000; Jones, 2000). Mixotrophy encompasses a spectrum of nutritional strategies 

(Jones, 1994). Certain types of phytoflagellates are capable of obtaining energy and/or 

nutrients by phototrophic autotrophy (using light energy and inorganic nutrients) and 

phagotrophic (ingesting particulate matter and bacteria into food vacuoles for 

subsequent digestion and utilization of derived organic compounds) or osmotrophic 

heterotrophy (utilizing dissolved organic compounds osmotrophically) (Bird & Kalff, 

1986; Isaksson et al., 1999; Stoecker, 1999). Mixotrophy is evident during situations of 

scarce light conditions (Jones, 1997) and enables phytoflagellates to outcompete purely 

autotrophic species during nutrient limited conditions (Caron et al.#$ %&&:)$ @A.99-.#$

%&&()$B!"19C"- m et al., 2001). This is an advantageous strategy in humic lakes, where 

access to nutrients is restricted due to nutrient competition with heterotrophic bacteria 

(Ramberg, 1979; Salonen & Jokinen, 1986; Riemann et al., 1995; Jansson et al., 1996; 

Jansson et al., 2001). Generally, mixotrophy is seen among dinoflagellates 

(Gymnodiniales) and certain types of Chrysophyta (Chromulina, Chrysococcus, 

Dinobryon, Ochromonas and Pseudopedinella) (Porter, 1988; Tranvik et al., 1989; 

Jansson et al., 1996; Geider & MacIntyre, 2002). Other flagellates have been shown to 

be potential or facultative mixotrophs, which is generally regarded as a facultative 

ability to supplement nutrients other than carbon (predominantly N or P) under 

conditions of limited nutrient availability (Riemann et al., 1995; Gervais, 1997). This 

latter strategy is not a substitute for autotrophy, but it can provide an energetic subsidy 

that may be stimulated under certain environmental conditions, such as reduced light or 

nutrient supply (Gervais, 1997; Li et al., 2000). The potential mixotrophic strategy is 

evident in certain Chlorophyta (Chlorococcales), Euglenophyta and Chryptophyta 

(Cryptomonas and Chroomonas/Rhodomonas) (Tranvik, 1989; Lewitus & Kana, 1994; 

Jansson et al., 1996).  

 

2.4.3.2 Picoplankton 

Autotrophic picoplankton, the smallest photosynthetic pro- and eukaryotic organisms, 

(cell size: 0.2-2 and 3 µm, respectively), represents an important component of 

freshwater ecosystems (Stockner & Antia, 1986; Callieri et al., 2007b). Picoplankton 

comprises several groups of algae, but is mainly represented by unicellular, coccoid 

picocyanobacteria from genus Cyanobium =7-DE"!8, 1996) and picoeukaryotes of 
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Chlorella-like chlorophytes (Stomp et al., 2007). The small cell size of picoplankton 

cause a high surface-to-volume ratio, which induce efficient nutrient uptake (Fogg, 

1986; Zevenboom, 1986). For that reason, in oligotrophic clearwater lakes the biomass 

of picoplankton frequently dominates the summer phytoplankton biomass (Stockner & 

Shortreed, 1989; Stockner, 1991; Vörös et al., 1998). In comparison, investigations of 

picoplankton in humic lakes found low biomass compared to clearwater lakes (Craig, 

1987; Kukkonen et al., 1997). Their abundance and biomass, as with other groups of 

algae, rises with nutrient enrichment (Stockner, 1988, 1991) and may reach a very high 

biomass in highly productive lakes =@< rgens & Jeppsen, 2000; Callieri & Stockner, 

2002a). In humic lakes picoplankton production can be restricted either by poor light 

availability (Eloranta, 1978; Arvola et al., 1999a) or by inorganic nutrient limitation 

(Meili, 1992) or by both these factors (Drakare et al., 2002, 2003). 

 

2.4.3.3 Heterotrophic bacteria 

In clearwater systems, phytoplankton account for most of the mobilization of carbon 

that later, via different processes including exudation, autolysis and grazing, becomes 

available to bacterioplankton growth. In those systems the relationship between phyto- 

and bacterioplankton can be described as a microbial loop with a strong dependence of 

bacteria on algae derived organic carbon (Azam et al., 1983). In contrast, high pelagic 

bacterial biomass and production have been reported from humic lakes, where 

allochthonous DOM is the dominating carbon source (Tranvik, 1988). In these systems 

bacteria are no longer dependent on carbon mobilized by primary producers (Tranvik, 

1988; Jansson et al., 1999; Bergström & Jansson, 2000a). 

 

In the photic zone of humic lakes the relationship between phyto- and bacterioplankton 

can be described as a competition for inorganic nutrients between two alternative 

energy mobilizers at the base of the food chain (Currie & Kalff, 1984; Hessen et al., 

1994; Jansson et al., 1996; Jansson, 1998). Because of their larger area-to-volume ratio 

and high uptake capacity for nutrients, bacterioplankton are generally thought to be the 

better competitors (Bratbak & Thingstad, 1985; Tranvik, 1992; Jansson et al., 1999; 

Jansson et al., 2001). Bacterial biomass and production can be an order of magnitude 

higher in the hypolimnion than in the epilimnion (Arvola et al., 1992). In the 

hypolimnion, large-sized phototrophic bacteria usually form thin and dense layers at 
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depths with sufficient irradiation (Salonen, 1992a). These bacterial layers provide extra 

food for migrating zooplankton (Salonen & Lehtovaara, 1992) and protozoa. If the 

hypolimnion is included, bacterial biomass and production become dominant in the 

majority of humic lakes, especially if the whole year is considered (Nürnberg & Shaw, 

1999).  

 

2.4.3.4 Ciliates 

Most planktonic ciliate taxa are obligate heterotrophs, obtaining resources by 

phagotrophic ingestion of particles. Šimek et al (1996) found that ciliates can meet all 

their carbon requirements with an exclusive diet of picoplankton, while other studies 

revealed that ciliates prey also on bacteria (Hessen et al., 1990; Havens, 1991) and algae 

(Jones, 2000). As a result, ciliates serve as a link to higher trophic levels (Stockner & 

Porter, 1988) and play an important role in the recycling of nutrients (Berman et al., 

1987; Caron et al., 1988; Martin-Creuzburg & Von Elert, 2006). Moreover, some taxa 

have been shown to sequester plastids from ingested algal prey (Rogerson et al., 1989; 

Jones, 2000). In these cases, the sequestered plastids continue to photosynthesize and 

are capable of an appreciable contribution to the carbon requirements of the ciliate 

(Blackbourn et al., 1973; Finlay & Esteban, 1998). 

 

2.5 Drinking water  

An increase in natural organic matter concentrations has implications for the ecology of 

aquatic environments, and also for drinking water supplies. The removal of DOC from 

water sources represents one of the major costs of water treatment (Worrall et al., 

2004c; Worrall et al., 2008). Dissolved organic substances in drinking water are 

important primarily because of their potential impacts on human health and secondly 

due to the aesthetic quality of drinking water (Janus, 2010). Additionally inorganic 

dissolved compounds, for example iron and manganese, impart a dark colour to water. 

During the last three decades different water treatment plants in Nordic countries have 

experienced difficulties in treating humic water due to a change in quality and quantity 

of organic matter (Rodriguez & Serodes, 2001a; Löfgren et al., 2003; NORDTEST, 

2003; Sharp et al., 2006). Drinking water treatment revolves around three main 

pollutants : bacterial and protozoan pathogens, dissolved substances and organic 
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precursors of disinfection by-products (DBPs) and nutrient levels, which are regulated 

by the European Drinking Water Directive (1998/83/EC).  

 

2.5.1 Bacterial and protozoan pathogens 

Throughout the twentieth century maintenance of the microbiological quality of 

drinking and bathing water has been an important means of preventing waterborne 

diseases.  The control of human and animal faecal bacteria (Escherichia coli, 

Enterococci, Clostridium perfringens) represents one of the most important human 

health indicators of drinking water quality. Their presence in drinking water should lead 

to investigation of potential sources, such as insufficient treatment process or breaches 

in the distribution system integrity (WHO, 2009). Two examples of pathogenic 

protozoan are Cryptosporidium and Giardia. The former is resistant to chlorine 

disinfections, thus managing this threat to the water supply involves limiting it at its 

source. This is particularly important in countries were brown waters are common as 

several studies found a temporal association between turbidity and the incidence of 

gastrointestinal infections, for example cryptosporidiosis in the treated water (Morris et 

al., 1996; Schwartz et al., 1997). Several outbreaks of cryptosporidiosis occurred over 

the last decade in the UK, US (Barrell et al., 2000), Norway, France and Ireland 

(Glaberman et al., 2002; Pelly et al., 2007; EPA, 2011b). Inadequate filtration processes 

lead to a major outbreak of cryptosporidiosis in Galway during 2007 for five months, 

causing illness in over 240 people (EPA, 2011b). 

 

2.5.2 Dissolved substances and organic precursors of disinfection by-
products 

DOC is of particular concern for drinking water because it has been identified as the 

principal precursor in the formation of carcinogenic compounds when water is 

disinfected by chlorination. Chlorine is a frequently used disinfectant in the water 

treatment process in order to ensure the microbiological safety of the drinking water. 

However, during disinfection, chlorine breaks down complex and inert organic 

molecules forming smaller reactive compounds. These compounds react with chlorine 

to form DBPs, which includes THMs (e.g. chloroform, bromodichloromethane, 

dibromochloro-methane and bromoform), haloacetic acids (e.g. trichloroacetic acid) and 

aldehydes (e.g. formaldehyde) (Rook, 1974; Reckhow & Singer, 1990; WHO, 2005). 

The range of DBPs have been associated with adverse health impacts, including an 
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increased risk of bladder and rectal cancer (Cantor et al., 1998; Nikolaou & Lekkas, 

2001; WHO, 2005) and adverse reproductive outcomes (short gestational duration, low 

birth weight, short body length and small head circumference) following exposure 

during pregnancy (Bove et al., 1995; Källén & Robert, 2000).  

 

The European Drinking Water Directive (Council Directive, 98/83/EC) implemented 

Biocidal Product Guidelines for chemical disinfectants, meant to kill or deactivate 

harmful or unwanted microorganisms and/or reduce residual concentrations in 

distribution systems to minimize microorganism re-growth (Rodrigurez & Sérodes, 

2001b). The formation of DBPs depends mainly on the amount of raw water DOM 

(Liang & Singer, 2003), which may vary significantly according to season and 

geographical location (Clark, 1994). Therefore, several factors, such as water 

temperature, pH, type of disinfection scenario (e.g. whether coagulation is practiced 

prior to disinfection), biodegradation of organic compounds amount of chlorine added, 

travel time of water within the system, can all impact the concentration and distribution 

of DBPs (Golfinopoulos et al., 1998; Rodriguez et al., 2002; Liang & Singer, 2003; 

Hong et al., 2007). THM formation increases with an increase in pH, while trihaloacetic 

acids decrease (Liang & Singer, 2003). Therefore, seasonal variations in DOC require 

pH corrections during treatment, before treated waters are released for public use 

(Gregor et al., 1997). An incorrect use of oxidants (e.g. chlorine, hydrogene peroxide) 

during disinfection may cause damage to human, animal and environment. The 

European Drinking Water Directive set strict standards for drinking water quality at tap 

(microbiological, chemical and organoletpic parameters) and restricted the maximum 

acceptable concentration for total THMs (sum of concentrations of specified 

compounds) to 100 µg L-1 and the concentration of chlorine to less than 250 mg L-1 

(European Union, 1998).   

 

2.5.3 Nutrient levels  

The overabundance of nutrients in water can cause a number of adverse ecological and 

health effects. Dissolved organic substances generated by phytoplankton can cause taste 

and odour problems and in some cases, toxicity (WHO, 2009). High levels of nitrate in 

drinking water may induce “Blue Baby syndrome” (methaemaglobinemia) and may 

increase mutagenicity, birth defects and contribute to bladder, ovarian and digestive 
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tract cancer (Camargo & Alonso, 2006).  Moreover, eutrophication of surface water 

often results in algal blooms. Blue green algae or cyanobacteria threaten the drinking 

water quality by causing physical obstructions to water treatment (Wroath & Fawell, 

1995) and some blooms contain species that can produce toxins (WHO, 1999). The 

most commonly encountered toxins are hepato- and neurotoxins. The former cause 

acute liver injury on acute exposure (Codd et al., 1999) and the latter induce paralysis of 

respiratory muscles (Wroath & Fawell, 1995; Codd et al., 1999). A further class of toxic 

compound associated with some algal blooms are lipopolysaccharides and are capable 

of causing skin disorders (irritation, rashes and wheals) and various gastrointestinal 

effects (Codd et al., 1999). The presence of algal toxins in drinking water have been 

reported annually in different countries around the world (Falconer, 1994; Falconer & 

Humpage, 2005), including several countries in Europe (Lawton & Codd, 1991; Hoeger 

et al., 2005; Depla et al., 2009). 

 

2.6 Recent rises in allochthonous organic carbon exports in aquatic 
ecosystems 

A range of studies have demonstrated long-term changes in DOC concentrations in 

surface waters for a range of sub-boreal countries over the last few decades. Several 

observations of rising DOC trends in waters draining peatlands have lead to concerns 

that peatland carbon stores are destabilizing (Forsberg, 1992; Freeman et al., 2001a; 

Tranvik & Jansson, 2002; Löfgren et al., 2003; Worrall & Burt, 2004a; Worrall et al., 

2004b; Evans et al., 2006a; Vuorenmaa et al., 2006). Significant upward trends in DOC 

concentration in surface water were evident at monitoring sites across northern and 

central Europe (Freeman et al., 2001a; Hejzlar et al., 2003; Worrall et al., 2004c) and in 

the northern and eastern US (Stoddard et al., 2003; Monteith et al., 2007; Zhang et al., 

2010). Skjelkvåle et al. (2001) report increased DOC evident south of 63°N and 

principally in the west, where snow cover in winter is less. Other studies revealed no 

overall trend in central Europe (Evans et al., 2005) and in Canada (Jeffries et al., 2003). 

Worrall et al. (2006) suggest that the carbon balance in a peaty catchment is balanced 

between sink and source, and conclude that peatlands are a smaller carbon sink than 

previously estimated.  
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2.7 Potential drivers of change in DOC  

The origin and interactions of DOC in hydrological catchments are very difficult to 

determine because many of the processes occurring are still unknown (Evans et al., 

2006a; Roulet & Moore, 2006). The quantity and quality of DOC in aquatic ecosystems 

varies physically, chemically and functionally from site to site and in time (Thacker et 

al., 2005). The concentration and contribution of the different carbon sources and the 

link between terrestrial and aquatic environments depends on the trophic state of lentic 

ecosystems and on the geographical location. Local variables encompass in-lake and 

catchment characteristics such as morphometry, lake hydrology, soil factors and land-

use and management, while regional variables are related to regional climate 

(precipitation, temperature, wind) and atmospheric deposition (e.g. decreased sulphur 

deposition and higher CO2 levels). A description of each variable is given below. While 

the variables are discussed individually, it is important to note that they are all 

interlinked. For example, Roulet & Moore (2006) state that the increases in DOC 

concentrations should not be attributed to any single factor. Similarly, Evans et al. 

(2006a) argue that the most realistic mechanism to explain the recent rise in DOC 

concentrations is a complex interaction of changing atmospheric deposition-related and 

climate-related factors. Also Sucker and Krause (2010) suggest that multiple drivers are 

required to explain the increases in DOC.   

 

2.7.1 Catchment morphometry and lake hydrology  

Several regional studies of humid-zone lakes show that catchment and lake 

morphometry, are the most important determinants of DOC concentration via their 

influence on allochthonous inputs (Rasmussen et al., 1989; D’Arcy & Carignan, 1997; 

Weyhenmeyer & Bloesch, 2001; Sobek et al., 2007). First of all, DOC concentrations 

are determined by various hydrological characteristics such as riverine inputs and 

relative rates of loading and in-lake transformations (Engstrom, 1987; Dillon & Molot, 

1997b; del Giorgio et al., 1999). Both can vary spatially across lakes (Mazzuoli et al., 

2005). Lake DOC is positively related to the lake drainage/lake area ratio and 

negatively related to catchment slope, residence time, lake area and mean lake depth 

(Rasmussen et al., 1989; del Giorgio & Peters, 1994; Pace & Cole, 2002; Sobek et al., 

2007). Catchment slope directly affects the degree of inundation of catchment soils, 

which in turn contributes to DOC generation within the catchment (Rasmussen et al., 
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1989; Xenopoulos et al., 2003). Catchments with steep slopes and porous geological 

materials tend to deliver their precipitation more directly and rapidly to drainage 

channels and/or adjacent streams, allowing less soil organic matter to dissolve (Frost et 

al., 2006). Steep slopes with reduced contact time between water and soil may also limit 

the potential for removal of nutrients (P and N runoff) to the surface waters (Dillon & 

Molot, 1990; Maberly et al., 2003).  In contrast, lower slopes have impeded drainage 

and extensive wetlands capable of supplying significant quantities of dissolved humic 

matter (Gorham et al., 1986; Pace & Cole, 2002; Sobek et al., 2007).  Large lakes with 

long water residence times generally tend to have lower DOC and colour, because of 

lower areal loading rates and higher in-lake rates of photo-degradation and microbial 

decomposition =F<"C+9#$%&&()$7- hler et al., 2002; Mazzuoli et al., 2005).  

 

2.7.2 Soil properties and vegetation 

Catchment soil characteristics and vegetation affect the terrestrial export of DOC in 

boreal areas (Hope et al., 1994; Tranvik & Jansson, 2002; Mattsson et al., 2005). 

Higher concentrations of DOC are common at sites with large stores of soil carbon, 

such as peatlands, wetland and dense forests, and especially where runoff is low (Dillon 

& Molot, 1997a; Gergel et al., 1999; Laudon et al., 2004). Low DOC concentrations are 

found in regions with sparse vegetation and poorly developed organic soils (Löfgren et 

al., 2003). Spatial variation in the export of DOC among catchments depends on the 

forest type (Ågren et al., 2007). Leaching is higher from Norway spruce stands 

compared to Scots pine because of the higher production of litter in the spruce forest 

floor (Strobel et al., 2001). This is explained by the fact that tree species produce litter 

with diverse chemical composition and degradability, and these differences influence 

the composition and reactivity of DOC in soil solutions that get washed out (Strobel et 

al., 2001). Deciduous tree litter is most easily degraded and yields high DOC run-off 

(Hongve, 1999; Hongve et al., 2000). 

 

It is estimated that approximately 455 Gt of carbon, representing near to one third of all 

the carbon present in soils on Earth, is stored in peat (Hope et al., 1994; Moore, 2002). 

Peat soils are those with an organic content of greater than 25% are formed from the 

partially decayed remains of living plants in areas of high rainfall and poor drainage 

(Ingram, 1982). Studies from boreal catchments revealed that peaty soils typically 
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release CO2 to the atmosphere and export DOC and dissolved organic nitrogen to the 

water bodies (Alvarez-Cobelas et al., 2008). Peaty soils export between 10 and 300 kg 

DOC ha-1 year-1 into water bodies (Billett et al., 2004; Laudon et al., 2004; Jonsson et 

al., 2007).  Peat soils are found in all latitudes, but the vast majority of them occur at 

low altitudes. In several Western and Northern European countries as well as parts of 

Canada, Alaska and Indonesia, peatlands are the most significant wetland environments 

and represent the largest terrestrial carbon store (Hope et al., 1994; Moore, 2002; 

Montanarella et al., 2006). Almost one-third (32.6%) of the European peatland resource 

is present in Finland and approximately 21.5% is in Sweden. The remainder is in 

Ireland (18.5%), UK (18.3%), Estonia (16%), Faeroe Islands (6.9%), Norway (6.1%), 

Netherlands (5.9%) and Latvia (5.3%) (Montanarella et al., 2006).  Peat soils are 

composed of two distinct horizons (acro- and catotelm) and are characterized by 

hydrologic conductivity (Evans et al., 1999). The acrotelm is an upper horizon of roots 

and decomposing plant material, while the catotelm comprises dense peat and is anoxic 

for most of the year.  When the water table falls, the soil moisture content of the 

acrotelm decreases and consequently aerobic decomposition and oxidation occur 

causing a decrease of DOC compounds in soil pore water (Clark et al., 2005).  

 

2.7.3 Land use and management 

DOC production and concentrations in freshwater ecosystems may vary according to 

land use changes and management (Chantigny, 2003; Worrall et al., 2003b). Land use 

changes, associated with forestry practices, burning of grassland and peatlands, draining 

and extraction of peatlands, or changes in grazing regimes, industrial activity, 

agricultural and domestic waste can influence the retention and the export of organic 

carbon from catchments (Worrall et al., 2003a; Evans et al., 2005; Tetzlaff et al., 2007). 

Generally coniferous vegetation provides a greater DOC input to adjacent lakes than 

hardwoods and explains the larger proportion of lake DOC variability over time 

(Cronan & Aiken, 1985; D’Arcy & Carignan, 1997; France et al., 2000; Xenopoulos et 

al., 2003). Forest fires, deforestation and afforestation schemes can lead to increases in 

DOC concentrations and nutrient run-off, which may persist for several years in aquatic 

systems (Carignan et al., 2000; Cummins & Farrell, 2003; DeFries & Eshleman, 2004). 

In particular, clear-felling operations have been shown to have a range of impacts 

including increased runoff (Roberts & Crane, 1997), fine sediment mobilization 
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(Johnson & Whitehead, 1993), nutrient leaching (Rodgers et al., 2010a) and 

acidification (Neal et al., 1992; Harriman et al., 2003).   

 

Many peatlands across the world have been drained to allow peat-cutting for fuel and to 

maximise the area of land for agriculture and forestry, or to alleviate floods (Burt, 

1995). Changes in land management, can change the balance between anaerobic and 

aerobic processes in surface layers result in DOC release (Holden et al., 2004; Worrall 

& Burt, 2004a). However, investigations of the impact of drainage on DOC 

concentrations have been contradictory with studies documenting increases, decreases 

and no change in DOC (Adamson et al., 1998; Chapman et al., 1999; Adamson et al., 

2000). Increases in grazing intensity can cause severe and irreparable soil erosion and 

denudation and influence the export of organic carbon from catchments (Garnett et al., 

2000; Bragg & Tallis, 2001; Allott et al., 2005). Industrial activity, agricultural and 

domestic waste can also contribute to DOC present in aquatic environments. This can 

enter through discharge from point sources or from diffuse sources from indirect 

leaching (Apsite & Klavins, 1998; Hudson et al., 2007).  

 

2.7.4 Climate and seasons 

Climate change presents one of the most severe threats to the future of human society 

(Fischlin et al., 2007). A growing body of evidence suggests that climate change over 

the last two centuries has moved beyond the range of natural variability (Bengtsson et 

al., 2006; IPCC, 2007). Climate change appears spatially and temporally highly variable 

(IPCC, 2001; 2007) and may be non-linear (Schindler et al., 1997; Porcal et al., 2009). 

According to the last IPCC Assessment Report (2007) global surface air temperatures in 

the last two decades (1995-2006) are among the highest on record since 1850. During 

the past 100 years precipitation patterns have changed significantly in many parts of the 

globe with respect to its amount, intensity, frequency and type (Freeman et al., 2001b; 

Evans et al., 2006a; Frei et al., 2006; Beniston et al., 2007; IPCC, 2007; Planton et al., 

2008; Fealy et al., 2010).  In northern Europe, average precipitation has increased, 

while it has decreased in the Mediterranean (IPCC, 2007). These tendencies may be 

associated with changes in the North Atlantic Oscillation (NAO) (Ottersen et al., 2001), 

a north-south dipole in sea-level pressure across the Atlantic (high-pressure zone 

centred over the Azores and low-pressure zone over Iceland), which has its strongest 
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signature in winter (Hurrell et al., 2003).  NAO influences inter-annual and multi-

decadal variability in the North Atlantic Ocean (Hurrell, 1995; Hurrell & Deser, 2009). 

During NAO positive phases, stronger atmospheric pressure gradients between the sub-

polar and subtropical region increases winter storm frequency and shifts the Gulf 

Stream current northward. During NAO negative phases, the Icelandic atmospheric low 

pressure shifts the winter storm tracks southward, while winter storms tend to be fewer 

in number and the Gulf Stream current shifts southward (Hurrell et al., 2001; Marshall 

et al., 2001). Variations in the latitudinal position of the Gulf Stream current is a 

response to fluctuations in NAO two years previously and, to a lesser extent, to the El 

Niño/Southern Oscillation (Taylor & Stephens, 1998; Taylor & Gangopadhyay, 2001). 

 

Total solar radiation and climate variables (precipitation and temperature) are key 

variables affecting lake and stream DOC concentrations (Bertilsson & Jones, 2003; 

Hudson et al., 2003; Lennon, 2004; Molot et al., 2005). Solar radiation provides the 

necessary energy to break down the double bonds of DOC (Wetzel, 2001). These 

photochemical processes (photo-bleaching and photo-degradation) are known to change 

the optical properties of coloured DOC in lakes and induce a reduction in DOC of c. 20-

60% over a period of 11-70 days (Curtis & Schindler, 1997; Moran et al., 2000; Molot 

et al., 2005; Shiller et al., 2006).  Air temperature and precipitation strongly influences 

both the production and transport of DOC from the catchment to surface waters. 

Upward trends in air temperature and incident solar radiation may indirectly influence 

DOC export by altering decomposition processes and mineralization of organic matter. 

Changes in temperature and consequent soil moisture level have direct impacts on 

decomposition processes (Worrall et al., 2006). Periods of drought, related to regional 

changes in climate, may either increase DOC concentrations in lakes (Forsberg, 1992; 

Worrall & Burt, 2004d) or reduce them (Schindler et al., 1997). Variations in 

temperature lead to differences in the contribution of aerobic and anaerobic 

decomposition in high organic soils (Chapman & Thurlow, 1998). Decomposition 

processes are greater on forested peat than on virgin peat and the differences in rates are 

linked to the impact of drainage at the forested site (Byrne et al., 2001). However, the 

concentration of DOC in soils and in stream-waters may not always show an immediate 

response to a rise in temperature (Clark et al.#$ G::H)$ I"- berg et al., 2006). This 

implies lags in either the population size or activity of soil biota or the kinetics of DOC 

release (Clark et al., 2005). The amount of delivered DOC also depends on the length of 
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the soil-drying period, particularly in waterlogged soils (e.g. peat bogs) (Fierer & 

Schimel, 2002). During dry periods the water table falls, aerobic decomposition 

increases and the solubility of DOC decreases, contributing to lower DOC 

concentrations (Clark et al., 2005). After a long drying period, rainfall events re-saturate 

the soil and the DOC, iron and aluminium gets washed out rapidly by hydrophobic re-

wetting of the peat matrix (Mitchell & McDonald, 1992; Buffam et al., 2001). This may 

be explained by longer residence time in the acrotelm and that this is then reflected in 

the chemistry of the runoff (Evans et al., 1999; Fenner et al., 2001; Hurst et al., 2004; 

Worrall et al., 2004c; Chow et al., 2006; Worrall et al., 2006). 

 

The effect of precipitation on lake DOC concentrations is complex because catchment 

properties (e.g. the proportion of wetland and land use, vegetation type and soil 

properties) influence and affect the DOC loads (Wetzel, 2001; Bertilsson & Jones, 

2003). Any variation in timing and intensity of regional precipitation usually alters the 

water budget and discharge of organic and inorganic matter and nutrient run-off from 

terrestrial into aquatic systems (Forsberg, 1992; Hongve et al., 2004; Dillon & Molot, 

2005; Erlandsson et al., 2008). The relationship between rainfall and/or snowmelt and 

lake DOC concentration can be strong (Correll et al., 2001) or weak (Spitzy & 

Leenheer, 1991), positive (Reche & Pace, 2002; Worrall et al., 2002; Arvola et al., 

2004), or negative (Sobek et al., 2007). Worrall et al. (2002) examined the release of 

DOC from upland peat in northern England during the autumn flushing and exhibited 

three hydrologically distinct fractions. The first fraction was low in DOC and was 

related to rainwater, which had little contact with the soil. The second was also 

characterized by low DOC levels but originated from old groundwater and had largely 

been exhausted of DOC. The third fraction had high DOC concentrations supplied by 

the surface peats, which had become a site of oxidation between rainfall or flushing 

events and, thus, had a high supply of available carbon. 

 

2.7.5 Atmospheric deposition 

A series of studies have proposed that some of the increasing aquatic DOC 

concentrations may be linked to recent decreases in anthropogenic acidification of 

surface waters associated with decreases in industrial emissions (Evans et al., 2006a; de 

Wit et al., 2007; Monteith et al., 2007; Erlandsson et al., 2008). Accumulations of 
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deposited sulphur and nitrogen potentially increase DOC concentrations because of 

changes in pH (Schindler et al., 1997). These changes can influence the solubility of 

DOC compounds, accelerate soil microbial decomposition, stimulate nitrogen limited 

forests and ground flora and give rise to increased primary production, more litter and 

consequently, more humic material (Krug & Frink, 1983; Clark et al., 2005; Findlay, 

2005; Evans et al., 2006a; Monteith et al., 2007).  Ireland has been proposed as an 

unpolluted reference for European studies (Beltman et al., 1993) as it has limited 

exposure to trans-boundary air pollution (Aherne & Farrell, 2002). 

 

2.8 Palaeolimnology 

Lakes act as a collection point for materials originating within lake basins themselves, 

their catchment and atmosphere (Likens, 1979; Wetzel, 1983). Lake sediments can 

provide a temporal perspective (or archive) of a vast range of physical, chemical and 

biological parameters, and indirectly of their driving factors (Battarbee, 1999). In order 

to reconstruct a lake’s history from sediment cores in an accurate and holistic manner, a 

range of elements are usually quantified such as the chronology of the sediment core 

together with the physical (e.g. textural analysis) and geochemical (organic and 

inorganic) features and preserved biological fossils and/or remains (plant macrofossils, 

pigments, diatoms, cladocera remains, chrysophyte scales, cysts, pollen and spores) 

(Blomqvist & Håkanson, 1981a; Battarbee, 1991; Kilham et al., 1996; Lotter & Bigler, 

2000; Rautio et al., 2000; Hausmann & Pienitz, 2009). The physico-geochemical and 

biological changes are then situated in time through the establishment of a core 

chronology using dating techniques. 

 

Multivariate techniques enable to explore the relationships between and within three 

taphonomic units (plankton, traps and surface sediments) and to quantify the role of 

dissolution on diatom assemblages (Cameron et al., 1999; Ryves et al., 2003). Sediment 

traps enable estimates of loss of material from the trophogenic zone (the upper portion 

of the lake were photosynthsis occurs) or accumulation of materials in the sediments for 

both short term and long-term studies (Kirchner, 1974; Smol, 1990; Ryves et al., 2003; 

Allott et al., 2005) in deep (Ryves et al., 2003) and shallow lakes (de Vicente et al., 

2006), rivers (Evans et al., 2006b), fijords (ZajJczkowski, 2002) and coastal and marine 

environments (Rutten et al., 2000; Kato et al., 2003). Generally one or more sediment 
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traps are installed at a certain or at different water depths in the deepest part of the lake 

(Lotter & Bigler, 2000; Hausmann & Pienitz, 2009). Sediment traps are important tools 

for examination of sinking loss rates and measuring daily, seasonal and/or annual fluxes 

of particles through the water column (Bloesch & Uehlinger, 1986; Horn & Horn, 1990; 

Agbeti et al., 1997), for the study of the pattern of sediment accumulation 

(Weyhenmeyer et al., 1995) and sediment resuspension in lakes with different 

morphometry (Steinman & Parparov, 1997; von Wachenfeldt & Tranvik, 2008a). The 

sediment trap technique has been used successfully to investigate seasonal dynamics of 

phytoplankton (Horn & Horn, 1990; Agbeti et al., 1997), water chemistry and diatom 

assemblages (Kilham et al., 1996; Lotter & Bigler, 2000; Hausmann & Pienitz, 2009), 

diatom and zooplankton communities (Rautio et al., 2000) and pollen (Blomqvist & 

Håkanson, 1981a). Sediment traps are of special value providing an integrated sample 

of the present day lake material that can be compared with sediment core samples 

and/or with plankton and benthic samples (Cameron, 1995; Lotter & Bigler, 2000; 

Köster & Pienitz, 2006).  

 

2.8.1 Chronology 

In order to evaluate when changes occur in lakes, and how long certain conditions may 

persist, it is necessary that sediment cores are dated. An important part of the process is 

estimating sediment accumulation rates (SAR). Radiometric lead (210Pb), caesium 

(137Cs) and americium (241Am) methods are used for recent chronologies (ca. 100-150 

years). The methods provide the key stimulus for the use of lake sediments allowing to 

define the timing of ecological change in lakes (Krishnaswamy et al., 1971; Pennington 

et al., 1973). 210Pb is a natural isotope, while 137Cs and 241Am are artificial 

radionuclides. The presence of the two latter radionuclides in lake sediments in most 

cases is related to the nuclear weapon testing maximum of 1963 (Ritchie & Mc Henry, 

1990). Additionally, the Chernobyl nuclear reactor accident of 137Cs fallout affected 

most parts of Europe in 1986 and contributes a second peak in lake sediments. Thus, the 

presence of two distinct artificial radionuclide peaks along a sediment core provides a 

valuable independent dating technique to validate 210Pb chronology. For longer 

timescales radiocarbon (14C) dating permits sediment chronologies up to approximately 

50,000 years Before Present (BP) to be estimated.  
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2.8.2 Sedimentary Organic Matter 

Sediment organic matter comprises an important fraction of lake sediments that escaped 

mineralization during sedimentation (Meyers & Lallier-Vergès, 1999). The primary 

source of organic matter to lake sediments derived is from the particulate detritus of 

autochtonous and allochtonous primary producers =0<,,8- tter, 2000). The primary 

producers can be divided into two distinct biogeochemical groups: nonvascular algae 

that encompass little or no carbon-rich fibrous tissues and contain a higher organic 

nitrogen content, and vascular plants (grasses, shrubs, trees) that contain large 

proportions of cellulose and lignin and a lower organic nitrogen content. The relative 

contribution from the primary producers to lake sedimentary records is influenced by 

lake morphology, catchment topography, palaeoclimatic conditions and the relative 

abundances of lacustrine aquatic and terrestrial plants (Meyers & Lallier-Vergès, 1999). 

Therefore, the origin of accumulation of sedimentary organic matter in lakes reveal the 

types and amounts of original materials covering the spectrum of being predominantly 

algal in some lakes (C/N ratio < 10) to being largely land-derived (C/N ratio > 20) in 

others (Lami et al., 1994; Meyers & Lallier-Vergès, 1999; Meyers & Teranes, 2001; 

Leng et al., 2005). Selective degradation can potentially modify the original C/N ratio 

of the organic matter, but in lake sediment, the signal appears to be preserved (Meyers, 

1994). As an accumulation of ‘geochemical fossils’, the organic matter content of lake 

sediments provides information that is important for interpretations of lake 

palaeoenvironments, histories of regional and continental palaeoclimates, and the 

natural and human induced changes and impacts in the aquatic ecosystem(s), such as for 

example eutrophication and changes in catchment vegetation and agriculture (Meyers & 

Lallier-Vergès, 1999; Meyers, 2003).  Moreover, accumulations of sedimentary organic 

matter in lakes reveal also the degree of alteration and degradation of the material 

(Meyers & Teranes, 2001). Although, diagenetic processes may alter its original 

composition, generally most lakes preserve organic matter in the sediment (Meyers, 

1994; Leng et al., 2005) where remineralisation rates are slow (Meyers, 2003). The 

processes of alteration and degradation of organic matter are geographically and 

temporally variable (Meyers & Teranes, 2001), can vary substantially from place to 

place within a lake (Anderson, 1990; Tenzer et al., 1997) and are influenced by 

environmental conditions (Meyers & Lallier-Vergès, 1999). 
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2.8.3 Biological remains 

Comprehensive understanding of a lake and its catchment requires analysis of multiple 

proxy records, including biological remains. Biological fossils including algal pigment 

and diatoms are commonly used to reconstruct ecological responses to the water column 

and surrounding source area.  

 

2.8.3.1 Pigments 

All photosynthetic organisms contain one or more pigments (or biochromes) in cell 

chloroplasts or in extra-cellular sheaths in certain cyanobacteria (Proteau et al., 1993). 

Their role is to absorb visible radiation at different wavelengths of the visible spectrum 

for either photosynthesis or protection from damaging levels of light (Rowan, 1989; 

Porra et al., 1997). Different pigments are characterised by separate absorption spectra 

that provide an useful aid in pigment identification (Leavitt, 1993). The abundance of 

pigments varies among cells within the same taxon or between different taxa. The cell 

pigment content can change in response to various environmental conditions, including 

irradiance, nutrient status, spectral distribution of light, day-length, diurnal cycle and 

growth phase (Partensky et al., 1993; Schlüter et al., 2000; Henriksen et al., 2002; 

Tukaj et al., 2003).  

 

The preserved fossil pigments in lake sediments are derived from planktonic and 

benthic algal communities, phototrophic bacterial populations (Overmann et al., 1993; 

Steinman et al., 1998), macrophytes (Bianchi & Findlay, 1993) and may be also present 

in some invertebrates (Leavitt, 1993; Patoine & Leavitt, 2006). In addition, a further 

source of pigments may be terrestrial detritus transported from the surrounding 

catchment or from re-suspended material from the bottom of the lake (Winfree et al., 

1997). Phytoplankton pigments can be separated into lipid-soluble and water-soluble 

compounds. The former compounds are generally used in the study of fossil deposits 

because they preserve much better in the sedimentary records and include chlorophylls, 

carotenoids (carotenoids and xanthophylls) and UV-absorbing compounds (Leavitt & 

Hodgson, 2001b). The lipid-soluble compounds are labile and their individual stability 

in sedimentary environments has been related to four numerical categories starting from 

most (1) to least (4) stable. Chlorophylls are vulnerable to oxidative degradation 

processes, causing the formation of various coloured breakdown products (Leavitt & 
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Carpenter, 1990b; Hurley & Armstrong, 1991; Bianchi & Findlay, 1993). The loss or 

modification of different compounds of the complex molecule can determine the 

formation of pheophytins (loss of the magnesium atom), chlorophyllide (loss of the 

phytol chain) or pheophorbides (loss of both magnesium and phytol chain). Carotenoids 

are less labile than chlorophylls. However, they are often broken down to colourless 

compounds that cannot be detected by regular pigment analysis methods. For example, 

some xanthophylls, such as fucoxanthin (stability 2) and diadinoxanthin (3), can be 

easily broken down and therefore be only present in the uppermost part of sediment 

records, whereas peridinin (4) is rarely preserved in sediment records (Leavitt & 

Hodgson, 2001a).  

 

The study of pigments has been included in limnological studies and multi-proxy 

palaeolimnological environmental reconstructions. Pigment analyses have been used to 

determine the phytoplankton community structure in water samples as a supplement or 

alternative to microscopical counts (Millie et al., 1993; Leavitt et al., 1999).  In 

palaeolimnological investigations fossil pigments provide information that would be 

impossible to achieve from other proxies (McGowan, 2007) and are fundamental if no 

historical phytoplankton counts are available. Sedimentary pigments have proved to be 

valuable indicators of past phototrophic production and communities (Guilizzoni et al., 

1983; Sanger, 1988; Leavitt, 1993; Harris et al., 1996; Leavitt & Hodgson, 2001a). 

Moreover, because many pigments show a degree of taxonomic specificity, they can be 

used to map the primary producer community to classes (algal divisions) (Lami et al., 

1992; Airs & Keely, 2003). Preserved pigments in the sediment records have been used 

as indicators of food-web interactions, lake acidification (Guilizzoni & Lami, 1992), 

eutrophication and land-use practices (Mc Elarney et al., 2009; McGowan et al., 2011), 

changes in the physical structure of lakes (Hodgson et al., 1998), mass flux within lakes 

(Ostrovsky & Yacobi, 1999) and climate change (Lami et al., 1996; Lami et al., 1997; 

Guilizzoni & Lami, 1999; Hall et al., 1999). Pigment breakdown products also provide 

indications of sedimentary and water column characteristics that regulate pigment 

transformations (e.g. grazing, anoxia, stratification) and are therefore key indicators of 

changes in the abiotic and biotic aquatic environment (Hodgson et al., 1998). 

Palaeolimnological analyses have demonstrated that changes in forest and soil 

development control dynamics of DOM to rivers and lakes and, thus, the exposure of 

aquatic biota to ultraviolet radiation (UVR) (Leavitt et al., 1997; Laurion et al., 2000; 
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Pienitz & Vincent, 2000). Surveys of alpine (Leavitt et al., 1997) and boreal lakes 

(Donahue et al., 2003) have demonstrated that benthic algae produce specific pigments 

(called UVR-absorbing compounds) in response to damaging levels of UVR. Those 

pigments have been used to document historical variations in the intensity of incident 

UVR of lakes (Garcia-Pichel & Castenholz, 1991; Leavitt et al., 1997; Cockell & 

Knowland, 1999; Quesada et al., 1999; Leavitt et al., 2003a). The occurrence of UVR-

absorbing compounds can be indirectly related to the light climate, depth of euphotic 

zone and the depth of potentially harmful UVR flux in lakes (Schindler, 1996a; Leavitt 

et al., 1997). 

 

2.8.3.2 Diatoms 

A widely employed approach in palaeolimnology focuses on the fossil remains of 

diatoms (Bacillariophyta). Diatoms often form a major component of freshwater 

ecosystems and as such, can be used as valuable indicators of water quality (Hall et al., 

1999; Battarbee et al., 2001; Clarke et al., 2005; Bennion & Batterbee, 2007). Since 

fairly distinct, siliceous cell walls (valves) of diatoms are abundant and well preserved 

in lake sediment cores (Battarbee, 1986), they are valuable proxies for reconstructing 

past changes in lake water quality (Battarbee et al., 2001; Stoermer & Smol, 2004; 

Clarke et al., 2005; Bennion & Batterbee, 2007). Several studies have investigated the 

potential of diatoms as indicators of trophic state (Lotter et al., 1998; Chen et al., 2008) 

or climate change (Wunsam et al., 1995; Lotter et al., 1998; Battarbee, 2000). Changes 

in the diatom flora suggest clear increases in humic matter in rivers and lakes 

(Engstrom, 1987; Pienitz et al., 1997; Turkia et al., 1998), while others suggest only 

mild responses =0- nkkö et al., 1988). The development of multivariate statistics has 

lead to environmental reconstructions including ecological optima and tolerances of 

diatom species for several environmental parameters, including pH (Cameron et al., 

1999), TP (Lotter et al., 1998; Chen et al., 2008), DOC and dissolved inorganic carbon 

(DIC) (Pienitz & Smol, 1993; Rosén et al., 2000), epilimnetic water temperature 

(Pienitz et al.#$%&&H)$K!L89C"- m et al., 1997), air temperature (Rosén et al., 2000) and 

specific conductivity (Gregory-Eaves et al., 1999) in aquatic ecosystems. 

 

Diatoms can be classified into four life-forms/taxa: planktonic taxa spend their whole 

life-cycle suspended in the water column, meroplanktonic taxa have some of their life-
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cycle resting on the sediment, tychoplanktonic taxa have their true habitat in the 

benthos, but can often be found resuspended in the water column and benthic taxa live 

near the bottom of a lake or are attached to the bottom substrate (Stevenson, 1996; 

Battarbee et al., 2001). Some taphonomic studies show a good agreement between the 

composition of planktonic diatom populations from the water column and from the 

sediment record in traps and surface sediments (Cameron, 1995; Lotter & Bigler, 2000; 

Köster & Pienitz, 2006; Hausmann & Pienitz, 2009), while other studies show 

considerable differences between diatoms found in the water column and the sediment 

record (Batterbee et al., 2005c). Cameron (1995) found good agreement between the 

composition of planktonic diatom populations from the water column and from the 

sediment record in traps and surface sediments, while other studies revealed 

considerable differences (Rautio et al., 2000; Batterbee et al., 2005c; Köster & Pienitz, 

2006).  The annual cycle in a lake can be characterized by diatoms collected in sediment 

traps and preserved in sediments and thus, reflect seasonal changes in sedimentation 

(Sommer, 1986; Stoermer, 1993; Cameron, 1995; Lotter & Bigler, 2000; Rautio et al., 

2000; Köster & Pienitz, 2006; Kirilova et al., 2008; Hausmann & Pienitz, 2009).  
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Chapter 3 – Study Sites 

 

 

3.1 Introduction 

This chapter outlines site selection and provides a description of the two catchments and 

the study lakes. A summary of available data on recent lake chemistry, trophic status 

and ecology is provided. This is followed by an overview of the climate and weather, 

geology, soil types and land use.  

 

3.2 Study site selection 

The study site selection considered a range of characteristics: first of all, the lakes 

needed to be surrounded by peat bogs, with data available on physical, chemical and 

biological parameters. The study lakes would ideally be sources for potable supplies and 

be included in the EU-funded CLIME project (Climate and Lake Impacts in Europe). 

The CLIME project simulated the responses of lakes to future as well as past changes in 

the weather and encompassed several lakes throughout eight European countries. Three 

Irish lakes were included: Lough Feeagh (County Mayo), Leane (County Kerry) and 

Poulaphuca (County Kildare).  The CLIME project highlighted the impacts of climate 

change on DOC and its ecological consequences and risks associated in water treatment. 

 

Feeagh was selected for this research as the primary study site due to the distinctively 

high levels of DOC, the availability of high frequency data since 1996 and the 

infrastructure and support available from the Marine Institute (MI), Newport. The 

second study site, Guitane is situated within the Leane catchment, is characterized by 

lower levels of DOC and thus, more transparent waters. Kerry County Council (KCC) 

has been monitoring the lake on a monthly basis since 1998 and facilitated fieldwork at 

the site. The lake is one of the most important drinking water supplies in the southwest 

of Ireland and was highlighted in the CLIME project as one of the lakes that would 

require a more detailed investigation (Naden et al., 2010).  
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3.3 Burrishoole catchment 

Lough Feeagh (Loch Fíoch in Irish) is situated in the Burrishoole catchment (Bhuréis 

Iumhaill) on the northwest Atlantic coast of Ireland in County Mayo (N 53°56’39’’, W 

9°34’33’’; WFD Code 32_510) (Figure 3.1.a). The catchment is in the Western River 

Basin District (WRBD) and is situated in a designated Special Area of Conservation 

(SAC) under the Habitats Directive (92/43/EEC). This SAC, called Owenduff-Nephin 

Beg Complex (SAC site code 534), is one of the largest (total area of 260.33 km2) and 

best Irish examples of active blanket bog (NPWS, 2006). For the Central Statistics 

Office (CSO), the national office responsible for census for agriculture and population, 

the catchment is included within Srahmore District Electoral Division (DED).  

 

The catchment lies in a north-south direction and extends over an area of 89.49 km2 

(Figure 3.1.b). It can be divided into two main sub-catchments: Feeagh (67.48 km2) to 

the north and Furnace (17.2 km2) to the south and it is drained by at least 70 km of 

small shallow streams that make up 30 ha of stream surface area (Poole & de Eyto, 

2006). The main rivers are Glenamong, Maumaratta, Altahoney, Galaun, Rough and 

Lodge.  The catchment comprises two major freshwater lakes, Feeagh (394.8 ha) and 

Bunaveela (45.7 ha), the brackish water tidal lagoon Furnace (167.6 ha) and a few 

smaller freshwater lakes sited in the uplands (Whelan et al., 1998). Burrishoole 

catchment communicates with the sea through a c. 4 km long tidal estuary and drains 

into Clew Bay to the sea. The north-western part of the catchment makes part of the 

Nephing Beg Range (maximum altitude of 627 m a.s.l.) and is characterized by steeper 

slopes compared to the north-eastern and eastern part (Allott et al., 2005). The lake 

provides a source of water to approximately 50 households (Jennings et al., 2010). A 

further abstraction from Moher Lake supplies the population of Westport. This 

oligotrophic lake is characterized by a good water quality, however the sampling rate 

for bacteriological parameters exceeded the regulation requirements (Leslie et al., 

2010). 



 

Figure 3.1 – Geographic position of the Burrishoole catchment; b) boundary of the catchment 
with its lakes, main rivers and location of weather and Research station (Marine Institute). 

 

The Burrishoole is known to be a “data

programme set up over the last decades. Since 1956 the MI has been an important site 

for fisheries research and 

eel) to and from the catchment 

Meteorological data have been recorded at 

high resolution Automatic Water Quality Monitoring Systems (AWQMS) were 

installed on Feeagh and Furnace in 2003 and 2008, respectively. Monitoring 

submerged aquatic plants, macroinvertebrates 

pelagic cladocera (MI, unpublished data) has been undertaken. Chydoridae were a

investigated and samples are collected monthly 

37!

Geographic position of the Burrishoole catchment; b) boundary of the catchment 
with its lakes, main rivers and location of weather and Research station (Marine Institute). 

The Burrishoole is known to be a “data-rich” catchment due to a detailed moni

programme set up over the last decades. Since 1956 the MI has been an important site 

for fisheries research and has been recording all migratory fish (

eel) to and from the catchment (Whelan et al., 1998; ICES, 2009a, 2009b)

Meteorological data have been recorded at the Furnace weather station since 1960. 

high resolution Automatic Water Quality Monitoring Systems (AWQMS) were 

installed on Feeagh and Furnace in 2003 and 2008, respectively. Monitoring 

submerged aquatic plants, macroinvertebrates (White, 2000; Irvine

pelagic cladocera (MI, unpublished data) has been undertaken. Chydoridae were a

investigated and samples are collected monthly (de Eyto, 2000; de Eyto

 

Geographic position of the Burrishoole catchment; b) boundary of the catchment 
with its lakes, main rivers and location of weather and Research station (Marine Institute).  

rich” catchment due to a detailed monitoring 

programme set up over the last decades. Since 1956 the MI has been an important site 

all migratory fish (salmon, sea trout and 

, 1998; ICES, 2009a, 2009b). 

the Furnace weather station since 1960. Two 

high resolution Automatic Water Quality Monitoring Systems (AWQMS) were 

installed on Feeagh and Furnace in 2003 and 2008, respectively. Monitoring of 

(White, 2000; Irvine et al., 2001) and 

pelagic cladocera (MI, unpublished data) has been undertaken. Chydoridae were also 

(de Eyto, 2000; de Eyto et al., 2002). 
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Factors influencing the pattern and extent of downstream transport of sediment in the 

Feeagh catchment were investigated between 2000 and 2001 (Allott et al., 2005). The 

catchment has also been included in several EU funded international (LIFE, REFLECT, 

LIFE II, and CLIME) and national research projects (RESCALE, INSIGHT, 

ILLUMINATE) (Jennings et al., 2000; Allott et al., 2005; George et al., 2005; 

Livingstone et al., 2005; Rouen et al., 2005; May & Place, 2005a; May et al., 2005b; 

Leira et al., 2006; Poole & de Eyto, 2006; Blenckner et al., 2007; George et al., 2007; 

Rodgers et al., 2008; Dalton et al., 2010; Fealy et al., 2010; Jennings et al., 2010; 

Naden et al., 2010; Rodgers et al., 2010a; Rodgers et al., 2010b; Jennings et al., 2011). 

In 2007, the catchment joined the Global Lake Ecological Observatory Network 

(GLEON) (http://www.gleon.org). GLEON aims to collate data from sensors deployed 

in lakes around the world to address not only local issues for individual lake 

ecosystems, but also to document regional and global changes in lakes that occur in 

response to different land-use, latitude and climate regimes.  

 

3.3.1 Lake characteristics  

Lough Feeagh (WFD code IE_WE_32_510, Irish Grid Reference F 965 000) lies 

approximately 200 m upstream of Furnace at an altitude of 11 m a.s.l. The lake has a 

drainage ratio (drainage area : lake area ratio) of 21.44, a mean depth of 14.5 m and a 

maximum depth of 45.3 m (Figure 3.2). The annual water residence time is circa 5.4 

months (Jennings et al., 2012). The main inflow rivers are the Glenamong, Maumaratta, 

Altahoney, Galaun, Rough and Lodge (Figure 3.1.b). The main outflows are the Salmon 

Leap and the man-made Mill Race and both connect Feeagh to the underlying brackish 

lake Furnace. The lake is composed of two main sub-basins: the deepest one occupies 

the northern portion of the Lough, while the western side of this basin is steep sided and 

descends to a depth of 43 m within 180 m of the western shore. A smaller basin lies to 

the south and reaches a maximum depth of 32 m. The southern and south-western part 

of the lake is characterized by a undulated floor with a depth varying between 15 and 18 

m (Whelan et al., 1998).   



 

Figure 3.2 – Bathymetric map of Feeagh showing the open water sampling station, sediment 
trap locations and sediment core collection points.
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Bathymetric map of Feeagh showing the open water sampling station, sediment 
trap locations and sediment core collection points. 

Feeagh is an EPA typology class 4 lake (deep (average > 4m and maximum depth > 12 

> 50 ha and low alkalinity (< 20 mg L-1 CaCO3) 

and its waters are neutral slightly acidic and distinctively coloured, with 

Cobalt Units (PtCo) ranging from 80-95 mg L-1 and a Secchi depth of 1.6 m 

et al., 2006). The waters have low nutrient concentrations with 

and < 1 mg TN l-1 (Allott et al., 1998; Free et al., 2006). Over 30 years the chl

concentration was low and did not exceed 4 µg L-1 (Flangan & Toner, 1975; Free

The most detailed water temperature records available for any Irish lake have 

been recorded at Feeagh (George et al., 2010). The annual surface temperature 

generally varies between 3 and 20°C. Feeagh was classified as a monomictic lake 

(mixes from top to bottom during one mixing period each year)

 

Bathymetric map of Feeagh showing the open water sampling station, sediment 

(deep (average > 4m and maximum depth > 12 

) (Taylor et al., 2006)) 

slightly acidic and distinctively coloured, with Platinum 

Secchi depth of 1.6 m (Flangan & 

. The waters have low nutrient concentrations with 12 >g 

. Over 30 years the chl-a 

(Flangan & Toner, 1975; Free et al., 

The most detailed water temperature records available for any Irish lake have 

annual surface temperature 

C. Feeagh was classified as a monomictic lake 

(mixes from top to bottom during one mixing period each year) (GLEON, 2008; 
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Jennings et al., 2012), although the prevailing wind blowing from the sea is readily 

eroding the seasonal thermocline (Whelan et al., 1998; Poole & de Eyto, 2006). A series 

of biological surveys were conducted on Feeagh. The first dates back to 1975 when 

Flanagan and Toner described the planktonic algal communities. A second survey of 

phytoplankton was conducted in July 2003 (Taylor et al., 2006) and a third between 

April and October 2007 (Dalton et al., 2010). The EPA included Feeagh in their 

operational monitoring programme between 2010 and 2012 (EPA, 2010). 

 

3.3.2 Climate 

The geographical location of Feeagh on the Atlantic coast favours a typical oceanic 

climate. The area is highly influenced by the Gulf Stream and the NAO. The mild, 

moist and extremely changeable type of weather is subject to strong winds, is ice-free 

during the winter and has relatively cool summers (Jennings et al., 2000; George et al., 

2004). Between 1960 and 2009 the weather station measured air temperatures ranging 

between -8.2°C in February 1969 and 33.9°C in July 2006 (MI, unpublished data). The 

average annual air temperature was 10.2°C and the annual rainfall was 1,572 mm over 

the same time-span (MI, unpublished data). The prevailing wind is from the southwest 

with mean hourly wind speeds of 6 to 7 m sec-1 (Healy et al., 1997). Rainfall is 

generally higher in the northwest of the catchment (c. 1,800 mm year-1) and is lower 

towards the south-east (c. 1300-1400 mm year-1) (Allott et al., 2005; Dalton et al., 

2010). Rainfall can vary considerably from year to year and wet weather can 

predominate at Burrishoole at any time of the year (Allott, 2005). Typically more 

precipitation fell during the autumn and winter (September - February) compared to 

spring and summer (March - August) over the last few decades (MI, unpublished data). 

An increase in extreme precipitation events during winter, from 3.2 to 7.5, is evident 

over the period between 1960 and 2009 (Fealy et al. 2010). 

 

3.3.3 Geology and soil 

The bedrock geology of the Feeagh catchment is dominated by metamorphic rocks of 

late Precambrian age, consisting of quartzite, schists, gneiss, quartzite and small areas 

of sandstone and limestone (Parker, 1977; Long et al., 1992). Distinct geological 

differences divide the western from the eastern sub-catchments: the north-west is 

composed of quartzite, whereas the west is dominated by a mixture of quartzite, schists 



 41!

and gneiss, leading to poorly buffered, generally acidic run-off (Whittow, 1974). 

Carboniferous limestone and sandstone occur on the northern and eastern side of the 

catchment, specifically around Lough Bunaveela and the Rough River. The eastern part 

is underlain by quartzite, combined with dolomite bands, volcanic rock, wacke and pure 

schist (Whelan et al., 1998). Finally, the land bar that separates Feeagh from Furnace is 

composed of schist and marks the boundary between metamorphic and carbonate 

lithologies (Whelan et al., 1998).  Blanket peat bogs constitute the dominant soil type 

over the lower slopes of the catchment together with peat podsols, poorly-drained gleys 

and alluvial deposits (May & Place, 2005a). 

 

3.3.4 Land cover and use  

CORINE land cover in the catchment, calculated for 1990 comprises 64% peat bog, 

23% forestry, 10% agricultural land and 3% transitional woodland and scrub, natural 

grasslands and sparsely vegetated areas (Free et al., 2006; Taylor et al., 2006). A 

comparison of the 1990 and 2006 CORINE data (Appendix A) confirm a decline in 

forest cover.  Pollen records from the Late Glacial suggest the development of forests 

and woodland, their subsequent decline and the development of peat soils by ca. 5,000 

cal yrs BP (Browne, 1986). Census data from CSO show that over the last six decades 

the primary land-use in the catchment were agriculture and forestry. Mountain sheep 

grazing, and to a minor extent cattle, represents the most important agricultural activity 

(Weir, 1996; Whelan et al., 1998; National Parks and Wildlife Service, 2006). The 

second most important land-use in the catchment is coniferous forestry. Until the 1950s 

only very small areas of native oak woodlands were present (Fealy et al., 2010). The 

first important commercial afforestation scheme of Sitka spruce (Picea sitchensis), 

Lodgepole pine (Pinus contorta), Norway spruce (Picea abies) and Larch (Larix sp.) 

started in 1951 and continued until the late 1980s (Whelan et al., 1998).  Human 

population has decreased c. 500 to 120 over the last 110 years (Dalton et al., 2010). 

 

3.4 Leane catchment  

Lough Guitane (Loch Coiteain) is part of the Leane catchment (Bhuréis Léin; meaning 

catchment of learning) and is located in the Killarney Valley in County Kerry in south-

west Ireland (52°00’21’N, 9°25’06’’W; WFD Code SW_27_122) (Figure 3.3). The 

catchment is in the Southern River Basin District (SRBD), lies within the Killarney 
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National Park, which is Ireland’s oldest National Park, and has been recognized as an 

UNESCO Biosphere Reserve (Fahy & Cross, 2007). Guitane is part of a proposed 

Natural Heritage Area and part of the Macgillycuddy’s Reeks and Caragh River SAC 

(site code 365) (EPA, 2003; EIS, 2009). The SAC is also part of the NATURA 2000 

database (European Council directive, 1992).  

 

 

Figure 3.3 a) Geographic position of the Leane and Guitane catchments and Valentia Observatory 
weather station; b) the Leane catchment and the Flesk (brown line) and Guitane (red line) 
subcatchments. 

 

The Leane catchment is divided into two main sub-catchments: Leane (210 km2) and 

Flesk (325 km2). The former comprises three main lakes: Lough Leane (Lower Lake; 

1987 ha), Upper Lake (1.7 ha) and Muckross (Middle Lake; 275 ha), while the Flesk 

sub-catchment includes one major lake, Lough Guitane (264 ha), positioned in the 

southern part of the catchment along with six smaller lakes. For this research the 

headwater Guitane catchment (12.03 km2) was considered exclusively. The mountains 

Stoompa (694 m), Crohane (548 m) and Bennaunmore (454 m) encircle Guitane 

catchment to the south-east.   
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KCC has been abstracting water from the Lough Guitane since the early 1980s. Water 

abstraction from the lake is carried out through a 120 m long pipe, which extends into 

the lake to reach a depth of 20 m at the northwestern shoreline. The raw water is gravity 

fed to a storage tank at Sheheree Reservoir, located 4 km to the northwest of the lake. 

(KCC, 2008). The lake water level is mechanically regulated through a manually 

operated sluice gate, which ensures fish migration via a fish-ladder (EEA, 2009). Until 

1999 an additional water supply was guaranteed from the Owgarriff River, but 

unacceptable levels of water colour and turbidity forced KCC to use Guitane as the sole 

source (EEA, 2009). The lake is the largest primary water supply scheme in County 

Kerry and extracts 51,000 m3 d-1 of water. The treatment plant caters for the water 

supply requirements of c. 60,000 people. In 2009 a chlorine dioxide disinfection system 

was installed (EEA, 2009).  Guitane is protected under the Drinking Water Regulations 

(S.I. 439/2000) (European Union, 2000b) and the precautionary principle has been 

adopted. This prohibits any form of development within the catchment area, precludes 

new percolation areas for on-site wastewater treatment facilities within 100 m of the 

shore and requires the installation of additional nutrient reduction measures for all new 

private development (EEA, 2009).  

 

Detailed limnological and palaeolimnological studies were conducted in the Leane 

catchment over the last four decades (Murray, 1979; Allott et al., 2001; McClure 

Morton & Pettit, 2003; Free et al., 2006; Jennings & Allott, 2006; Dalton et al., 2010) 

as water quality has been declining in recent years (EPA, 2003). A detailed monitoring 

and management system was set up following severe algal blooms in Lough Leane 

(Allott et al., 2001; EPA, 2003). The first ecological descriptions for Guitane date back 

to West & West (1906) and it was not until 1999 that a more complete qualitative and 

quantitative account of phyto- and zooplankton, benthic profundal and littoral 

macroinvertebrates was conducted (Twomey et al., 2000). A study on the effect of 

endocrine disrupting compounds on wild fish populations included Guitane as one of 

the study sites (Tarrant et al., 2005; Tarrant et al., 2008). KCC have been conducting 

monthly monitoring of physical, chemical and biological parameters in Lough Guitane 

since 1999.  Guitane has been included in the EPA operational monitoring programme 

since 2010.  
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3.4.1 Lake characteristics 

Lough Guitane (WFD code IE_SW_22_172, Irish Grid Reference number W 025 845) 

has a mean depth is 18.7 m and a maximum depth of 56.5 m (Figure 3.4). The lake lies 

at an altitude of 77 m a.s.l. and its drainage ratio is 7.73.  The annual residence time is 

approximately 5.5 months (KCC, pers. comm.). Four streams discharge into the 

southern side of the lake. Three are first order streams, while the Cappagh River is the 

largest stream with a length of approximately 6 km (Figure 3.3.b). The Finow River is 

the main outflow at the northern side of the lake and flows into the Flesk River, which 

continues in a south-western direction and flows into Lough Leane. Bare Island, on the 

northern side of the lake, divides the lake into two sub-basins. The deepest basin lies to 

the west, while a smaller basin with a maximum depth of 40 m lies to the east. 

 

 

Figure 3.4 – Bathymetric map of Guitane showing the open water sampling station, sediment 
trap locations and sediment core collection points.  

 

Guitane is an EPA typology class 4 lake (Free et al., 2006) and its waters are described 

as neutral (6.9-7.1 pH), very soft, transparent in colour (13-20 mg L-1 PtCo) with low 

nutrient and chl-a concentrations (TP: 1-5 µg L-1; TN: 0.005-0.25 mg L-1 and chl-a: 2-

2.4 µg L-1) and a Secchi depth of 4.5 m (Caffrey et al., 1999; Free et al., 2006). The 
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annual surface water temperature in Guitane varied between 5.3 and 25°C between 

1999 and 2009 (KCC pers. comm.).  

 

3.4.2 Climate  

Similarly to the Burrishoole catchment, the geographic location of Leane catchment is 

mainly influenced by Atlantic air masses (e.g. NAO) and to a lesser extent, by the 

latitudinal position of the Gulf Stream (Jennings & Allott, 2006). The more northerly 

position of the Gulf Stream in early summer contributes to warmer and sunnier weather 

in the southwest Ireland.  The closest weather stations are situated at Muckross and 

Valentia Island.  Valentia Observatory lies off the Iveragh Peninsula in the south-west 

of County Kerry (Figure 3.3.a) and has been monitoring several meteorological 

parameters since 1868 (Hickey, 2003). A weather station is located on! !"#$ %&'!"(

)#%!#*+$ %"&*#$ &,$ -&'."$ -#/+# (Figure 3.3.b) and is called 0'12*&%%$ 3&'%#$

4#/!"#*$5!/!6&+7$8"#$%!/!6&+ is managed by KCC and daily rainfall, minimum and 

maximum air temperatures (°C) have been recorded since 1999.  

 

Monthly average air temperature data from the Valentia observatory recorded from 

1961 to 1990 ranged 6.6°C to 14.8 (NPWS, 2005). A range of -8.8°C and 30.1°C was 

recorded between 1990 and 1998 at Muckross weather station (KCC, unpublished data).  

Average annual rainfall of 1,817 mm was measured between 1990 and 2009 (KCC, 

unpublished data). Allott et al. (2008) observed that there was considerable variability 

across Leane catchment from approximately 1000 mm year-1 in the northeast to 2700-

3200 mm year-1 in the southwest.  

 

3.4.3 Geology and soil 

The Guitane catchment straddles a geological fault with its southern part comprising 

Old Red Sandstone and volcanic rocks that vary in thickness from 90 to 300 meters 

(Avison, 1984). The northern portion of the catchment is underlain by limestone 

together with overburden deposits of glacial gravel and boulder clay (Avison, 1984; 

Pracht & Kinnaird, 1997). The soils in the Guitane catchments are peaty podzols and 

blanket peat.  
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3.4.4 Land cover and use  

CORINE land cover comprised 75% peat bog, 9% other (sparsely vegetated areas), 8% 

pasture, 5% agriculture and 3% forestry in 1990 and 2006 (CORINE, 1990; CORINE, 

2006) (Appendix B). Blanket peat, together with sparsely vegetated areas and improved 

agricultural natural grassland occur to the southwest and pasture to the north  and 

northwest. A small patch of broad-leaved forest is present on the south-west shoreline 

of Guitane.  The main land use in the catchment is sheep and cattle farming and to a 

minor extent, amenity or tourism activities (Jennings et al., 2009). Human population 

levels encountered in the Flesk subcatchment have increased from 350 in 1996 to 402 in 

2011 (CSO, 1991, 2000, 2006, 2011). The population density has been estimated 

between 10 and 20 people per km2 with inhabitants more concentrated in the northern 

sector of the catchment (Clabby et al., 2004). The number of local population kept 

around 5,000 people over the last eight decades (Dalton, et al., 2010). The Killarney 

Valley represents one of the most visited tourist venues in the country and attracts 

approximately 1.5 million visitors per year. Guitane is well known for angling, pony 

trekking and hiking (National Parks and Wildlife Service, 2005).  
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Chapter 4 - Materials and Methods 

 

 

4.1 Introduction 

This chapter describes in detail the materials and methods applied in this research. The 

configuration of the chapter reflects the analytical phases of the research separating the 

ecological from the palaeoecological methods. Field methods are highlighted first and 

include instrumental data, open water sampling, sediment trap construction, installation 

and sample collection and finally sediment core collection and sample extrusion. The 

second part of the chapter details the laboratory analytical techniques. The final section 

describes the data analysis techniques used in data exploration. Feeagh was the primary 

site and was sampled more frequently than Guitane.  

 

4.2 Field methods  

4.2.1 Instrumental and measured meteorological and water quality data 

Furnace and Muckross House Meteorological Stations, an AWQMS on Furnace 

and monthly sampling of Guitane generate records of meteorological and water 

quality parameters collected either on a high (every two-minutes) or low 

(monthly) frequency (Table 4.1).  Data were collated for the relevant time period for 

this project. Furnace Weather Station collects rainfall data (mm) and the AWQMS 

records air temperature (°C), wind speed (m s-1), wind direction (°), relative humidity 

(%), atmospheric pressure (mBar), Photon Flux Density (PFD) (µmol m-2 s-1) and 

photosynthetically active radiation (PAR) (µE m-1 s-2). The Muckross House 

Meteorological Station collects daily rainfall data (mm) and minimum/maximum air 

temperature (°C). Day length, expressed as hours of light, and daily maximum surface 

PFD were calculated from this data. Feeagh water quality parameters include Secchi 

depth (m), thermal vertical temperature profiles from 1 to 42 m depth (with 2 m 

intervals from 2.5 to 22 m and 5 m intervals to 42 m) and dissolved oxygen (DO) 

concentration (%), concentrations of chl-a (µg L-1), turbidity (Relative Turbidity Unit 
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(RTU), total suspended solids (mV), pH, conductivity (mS cm-1) at 1 m depth.  Water 

quality parameters measured in Guitane include monthly Secchi depth (m), vertical 

profiles of temperature (°C) and DO concentrations (%) collected at five-meter intervals 

from the water surface to a depth of 40 m. High and low frequency ecological data 

were managed using Microsoft Excel and stratigraphical plots of temperature and 

dissolved oxygen were constructed with SigmaPlot 11.0 (Systat Software 2008). 

Thermocline depth was calculated using Lake Analyzer Web (Read & Muraoka, 

2011).$ 

!

Table 4.1 – Overview of the meteorological and water quality parameters, frequency and depth 
(m) measured in Feeagh and Guitane.  
Parameter! Feeagh ! Guitane !
! ! !Meteorological Data! ! !
Rainfall (mm)! Daily! Daily !
Air temperature (°C)! Two minutes ! Daily min/max!
Wind speed (m s-1) and direction (°)! Two minutes! -!
PFD (µmol m-2 s-1) ! Two minutes! -!
PAR (µE m-1 s-2)! Two minutes! -!
! ! !Water Quality Data! ! !
Secchi depth (m)! Fortnightly ! Monthly!
Water temperature (°C)! Two minutes (1 – 42 m)! Monthly (0-40 m)!
Dissolved oxygen concentration (%)! Two minutes (1 m)! Monthly (0-40 m)!
Chl-a (µg L-1), turbidity (RTU), TSS (mV), 
pH, conductivity (mS cm-1)!

Two minutes (1 m)! - !

!

4.2.2 Water sampling 

The fieldwork was organized on both lakes with the support of Marine Institute, 

Newport and KCC, Tralee. From April 2009 to May 2010 vertically integrated open 

water samples were collected from the deepest point of each lake on a monthly basis. In 

Feeagh additional biological samples were collected approximately every two weeks 

from Feeagh over the whole period. Moreover, monthly samples from March 2008 to 

April 2009 collected by Marine Institute Newport were also processed for 

phytoplankton and ciliates. Preserved open water samples were not available for March 

2009. In Guitane very poor weather conditions prevented measurements in November 

2009 and for that reason a water sample for chemical and biological analyses was 

collected from the outflow (Finow river). A total of 39 and 12 biological samples were 
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collected and processed for Feeagh and Guitane, respectively. Water samples were 

collected using a 2.5 cm diameter tube sampler characterized by two different lengths: 

1.5 m for Feeagh and 5 m for Guitane. The different lengths accommodated the average 

Secchi depths measured over the last 10 years, or the mean depth of the euphotic zone 

(Håkanson & Peters, 1995; Arvola et al., 1999b). The tube sampler was gently inserted 

vertically into the water column and the top sealed by covering it tightly with the palm 

of the hand. The tube and sample were lifted out of the water and the sample was 

transferred directly into a two-litre polyethylene bottle. Sample bottles were rinsed three 

times with lake water before use. Four 1.5 m and two 5 m vertically integrated samples 

provided two two-litre samples. 

 

4.2.3 Construction, installation and sampling of sediment traps 

Sediment traps were constructed from a design template from University College 

London (Cameron, 1995), which followed the recommendations of Bloesch & Burns 

(1980) and Blomqvist & Håkanson (1981a). Each sediment trap was composed of three 

open cylindrical PVC tubes (Figure 4.2) with an aspect ratio (height : width) of 5 : 1 in 

order to avoid loss of collected sediment (Gardner, 1980a; Blomqvist & Kofoed, 

1981b). The removable tubes were closed at the lower end with a tight cap and were 

fixed on a central polypropylene platform embedded with Styrofoam, giving the trap the 

necessary rigidity and balance. Three sediment traps were placed in the areas adjacent 

to the main lake in- and outflows and the deepest waters in each lake. The geographical 

references of the locations of each trap with the water depth are listed in Table 4.2 (see 

also Figure 3.2 and Figure 3.4). The locations of the three sediment traps were termed 

“inflow”, “deepest” and “outflow”. The traps were suspended approximately 4 m above 

the lake-bed. The same distance from the lake-bed was used at all sampling occasions. 

Each trap was anchored in the sediment using a cement block, buoyed at the surface to 

mark their position and another buoy was positioned one meter above each trap to keep 

the rope taut and the trap relatively level. It has been shown that this method works well 

keeping a constant distance between the trap and the lake bottom, however it 

necessitates the heavy anchor to be lifted frequently (ZajJczkowski, 2002).  



 

Figure 4.1 – Sediment trap top and lateral view and associated dimensions

 

 

Table 4.2- Geographical reference of the location of the sediment traps and sediment 
cores and water depth (m) 
 

Station GPS co-ordinates
Feeagh  
Inflow - Trap N 53°57’18.78’’  W
Inflow - Core N 53°57’17.94’’  W 9°34’57.34’’
Deepest - Trap N 53°56’33.69’’  W 9°34’39.63’’
Deepest - Core N 53°56’35.39’’  W 9°34’39.62’’
Outflow - Trap N 53°56’02.40’’  W 9°34’47.00’’
Outflow - Core N 53°56’00.29’’  W 

Guitane  
Inflow - Core N 52°00’14.99’’  W 9°24’50.62’’
Deepest - Trap N 52°00’31.38’’  W 9°24’53.94’’
Deepest - Core N 52°00’31.38’’  W 9°24’53.94’’
Outflow - Core N 52°00’31.38’’  W 9°24’53.94’’
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Sediment trap top and lateral view and associated dimensions 

Geographical reference of the location of the sediment traps and sediment 

ordinates Depth (m) 
 

N 53°57’18.78’’  W 9°34’54.46’’ 18 
N 53°57’17.94’’  W 9°34’57.34’’ 18 
N 53°56’33.69’’  W 9°34’39.63’’ 43 
N 53°56’35.39’’  W 9°34’39.62’’ 43 
N 53°56’02.40’’  W 9°34’47.00’’ 21 
N 53°56’00.29’’  W 9°34’47.02’’ 21 

 
 

N 52°00’14.99’’  W 9°24’50.62’’ 18 
N 52°00’31.38’’  W 9°24’53.94’’ 48 
N 52°00’31.38’’  W 9°24’53.94’’ 52 
N 52°00’31.38’’  W 9°24’53.94’’ 20 

 

 

Geographical reference of the location of the sediment traps and sediment 
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The traps were positioned in Feeagh on the 1st April 2009 and in Guitane on the 26th 

May 2009. Time-series sediment trap samples were collected from Feeagh at 

approximately two-month intervals from April 2009 to July 2010 and at a seven-month 

interval from July 2010 to February 2011. Samples from Guitane were collected at six 

to eight month intervals from May 2009 to January 2011. The inflow trap in Feeagh in 

July 2009 and the sediment sample from the deep-water trap in Guitane in January 2010 

were accidentally lost during fieldwork. The lost sediment trap in Feeagh was replaced 

one month later, while in Guitane the trap was re-positioned the same day. On each 

sampling occasion the water and sediment present in each trap tube was transferred into 

a single pre-washed and labelled one-litre polyethylene bottle. The sedimentation traps 

were re-deployed with clean tubes. The triplicate sediment trap samples collected were 

stored in a cool-box with ice bricks and transported to the laboratory within 1-2 days. 

 

4.2.4 Sediment core collection and sample extrusion 

In Feeagh three 40 cm sediment cores were collected adjacent to the sediment traps on 

the 22nd July 2010. In Guitane a 52 cm sediment core was retrieved from the deepest 

part of the lake on the 14th July 2010. In addition, three short sediment cores from 

Feeagh and one sediment core from Guitane were collected from each sampling site 

between January and February 2011 for pigment analysis. A distance of approximately 

7 m was kept from the sediment traps to avoid collecting disturbed sediment. The 

sampling positions are illustrated in Figure 3.2 and in Figure 3.4 for Feeagh and 

Guitane, respectively, while the GPS co-ordinates of the sampling positions are listed in 

Table 4.2.  The sediment cores were extracted using a HTH gravity corer (Teknik, 

Vårvågen 37, SE-95149 Luleå; (Renberg & Hansson, 2008), were sectioned at 1 cm 

intervals and placed in sealed plastic bags. Subsamples were collected at 2 cm intervals 

for pigment analysis, avoiding light contact and the inclusion of air bubbles (Reuss & 

Conley, 2005). Samples for pigment analysis were stored at -20°C within 5 hours.  

During extrusion of the core sediment characteristics were noted and precise points of 

any apparent variations in sediment type (Troels-Smith, 1955) or colour change (using 

Munsell Colour Chart) (Oyama & Takehara, 1967).  
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4.3 Ecological Analysis 

4.3.1 Sample preparation 

Water samples were pre-processed at the field-sites for laboratory chemical and 

biological analysis. First of all, samples for DOC analysis were filtered and acidified. 

Sub-samples of 100 mL were filtered using Whatman glass microfiber filter (Grade 

GF/F), pore size 0.45 µm) and 2-3 drops of 2 M HCl were added to remove inorganic 

carbon by lowering the pH of the sample to 2.0. A two-litre water sample was enclosed 

in a box filled with frozen ice bricks and sent within one day to the Centre of 

Environment, Trinity College Dublin, for chemical analysis.  A second two-litre sample 

was used for biological analyses: a 250 mL sub-sample for phytoplankton and ciliates 

analysis was fixed with 1.5 mL of Lugol’s iodine solution (Merck with a composition of 

I2 = 3.2 g L-1 and Kl = 6.8 g L-1) (European Union, 2009). Samples for pico- and 

bacterioplankton analysis were fixed with pre-filtered (0.2 µm pore size, Whatman 

GTTPO2500) 20% formaldehyde buffered with sodium cacodylate 0.1 M to final 

concentrations of 1% and 4%, respectively (Hayat, 1981) and stored in sterilized amber 

glass bottles (Callieri and Stockner 2002). The use of 20% formaldehyde is considered 

less stressful for cells (Callieri et al., 2002b). The samples were kept refrigerated in the 

dark and were processed as soon as possible after sampling to avoid loss of cell 

numbers (Turley & Hughes, 1992) and to decrease problems with bleaching of 

autofluorescent pigments and thus prevent loss of pigment fluorescence (Olrik et al., 

1998; Callieri & Stockner, 2002a). The rest of the fresh (unpreserved) sample was 

stored at 4°C to aid in the phytoplankton identification process and examined within 2-3 

days of sampling.  

 

4.3.2 Chemical Analysis 

Monthly chemical analyses were carried out at the Centre of the Environment at Trinity 

College, Dublin by Dr. Mark Kavanagh and under the supervision of Dr. Norman 

Allott. A total of ten chemical parameters were analysed and are listed in Table 4.3 

together with their abbreviations, measurement units and relevant reference for method 

used. 
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Table 4.3 - Chemical parameters examined with relative abbreviations and method references 

Parameter  Abbreviation Measurement unit Method  

Alkalinity  mg L-1 CaCO3 (Clesceri et al., 1999) 
Conductivity   >S cm-1 (Clesceri et al., 1999) 
pH  Units (Davison, 1990) 
Colour  PtCo mg L-1 (Clesceri et al., 1999) 

Chlorophyll-a chl-a µg L-1 (Standing Committee of 
Analysts, 1983) 

Dissolved organic carbon DOC mg L-1 (Clesceri et al., 1999) 
Dissolved Molybdate 
Reactive Phosphorous  

DMRP µg L-1 (Eisenreich et al., 1975) 

Total Phosphorous  TP µg L-1 (Eisenreich et al., 1975) 
Total Nitrogen TN µg L-1 (Korolef, 1983) 
Nitrate Nitrogen  NO3-N µg L-1 (Clesceri et al., 1999) 
 

4.3.3 Biological Analysis 

4.3.3.1 Sample processing  

Preserved phytoplankton samples were processed following the sedimentation 

technique developed by MC!"D- hl in 1958 . The standard method was included in the 

WFD (EN 15204 2006) (European Standard, 2006). Before taking a sub-sample to fill 

the sediment chamber, the sample (previously acclimatized to room temperature) was 

gently mixed by overturning. As the composition and concentration of the 

phytoplankton in the samples was unknown, the samples were set up in different 

chamber sizes (25, 10 and 5 mL) simultaneously. The 25 mL chamber was adopted as it 

gave a good overview of the algal composition and the same settling volume was used 

throughout the whole series of samples from both lakes. Sedimentation chambers were 

filled to the top with sufficient excess to permit the water to “bead” upward. A glass 

cover was gently placed across the top of the chamber to remove any excess water and 

to enclose the exact volume of sample without entrapping any air bubbles. In order to 

ensure complete sedimentation of all organisms, sedimentation time in hours was at 

least three times the height of the sedimentation chamber (Margalef, 1969; 

Vollenweider, 1974).  

 

4.3.3.2 Phytoplankton and Ciliates enumeration 

Identification and enumeration of phytoplankton and ciliates was conducted under an 

inverted microscope (Brunel SP-95-I) at different magnifications. The microscope was 



 

coupled with a digital camera (Leica DFC 290) and 

2.8.1) software was used to capture and analyse photographic images (Figure 4.2). 

 

 

 

Figure 4.2 - Images of some phytoplankton taxa 
Chroomonas/Rhodomonas minuta (top) and 
Cryptomonas sp. (3) Oocystis sp.; (4)
caudata; (7) Tabellaria ulna and Dinobryon

Before starting the counting procedure the overall distribution pattern of phytoplankton 

was checked at the lowest magnification (10x). Only samples with a random (Poisson) 

distribution were analyzed. Only cells that appeared viable with intact chloroplast

enumerated and estimates of cell numbers of cyanobacterial colonies were made. 

Filaments/trichomes and coenobia were counted individually. 

Dinobryon loricas or diatom valves) and unicellular picoplankton (< 2 µm) were not 
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coupled with a digital camera (Leica DFC 290) and Leica Application Suite

2.8.1) software was used to capture and analyse photographic images (Figure 4.2). 

 

 

 

Images of some phytoplankton taxa and Ciliates in Feeagh and Guitane: (1) 
(top) and Chroomonas/Rhodomonas acuta (bottom)
; (4) Ciliate; (5) Staurastrum anatium; (6) Mallomonas 

Dinobryon sp.; (8) Anabaena flos-aquae.  

Before starting the counting procedure the overall distribution pattern of phytoplankton 

was checked at the lowest magnification (10x). Only samples with a random (Poisson) 

distribution were analyzed. Only cells that appeared viable with intact chloroplast

enumerated and estimates of cell numbers of cyanobacterial colonies were made. 

Filaments/trichomes and coenobia were counted individually. Empty cells (e.g. empty 

loricas or diatom valves) and unicellular picoplankton (< 2 µm) were not 

ation Suite (Version 

2.8.1) software was used to capture and analyse photographic images (Figure 4.2).  

 

 

 
in Feeagh and Guitane: (1) 

(bottom); (2); 
Mallomonas 

Before starting the counting procedure the overall distribution pattern of phytoplankton 

was checked at the lowest magnification (10x). Only samples with a random (Poisson) 

distribution were analyzed. Only cells that appeared viable with intact chloroplasts were 

enumerated and estimates of cell numbers of cyanobacterial colonies were made. 

Empty cells (e.g. empty 

loricas or diatom valves) and unicellular picoplankton (< 2 µm) were not 



 

enumerated. Enumeration was conducted as follows (Figure 4.3): the chamber was 

scanned at a magnification of 250x in a series of horizontal transects. All ciliates and 

large taxa (e.g. Ceratium

Woronichinia, Fragilaria, Oscillatoria

organisms together with the smaller colonies, 

Anabaena, Merismopedia

Asterionella, Aulacoseira, Djno

Cryptomonas) were identified and counted in the second half chamber (separated by the 

dashed line in Figure 4.3.

example Rhodomonas,

Monoraphidium, Chrysochromulina

diagonal transects (Figure 4.3 

of the important species were enumerated in eac

corresponds to a confidence limit of 10% 

facilitate the enumeration of phytoplankton cells the computer programme Opticount

(Hepperle, 2005) was used. 
 

Figure 4.3 – Counting chamber enumeration methods a) horizontal (250x) and b) diagonal 
(400x). 

 

Identification of taxa to genus, and when possible, to species level was 

primarily through the use of a range of taxonomic references 

1942, 1955, 1962, 1972, 1982, 1983; John

training course in the University of Durham in advanced algal identification and 

taxonomy of green and blue

Whitton and Dr. David John was attended. Dr. Norman
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merated. Enumeration was conducted as follows (Figure 4.3): the chamber was 

scanned at a magnification of 250x in a series of horizontal transects. All ciliates and 

Ceratium, Staurastrum), large colonies and filaments (e.g. 

ragilaria, Oscillatoria) were counted (Figure 4.3.a). The same 

organisms together with the smaller colonies, coenobia, filaments or trichomes (e.g. 

Merismopedia, Aphanocapsa, Scenedesmus, Crucigenia

Aulacoseira, Djnobryon) and larger algae (> 15 µm length) (

) were identified and counted in the second half chamber (separated by the 

Figure 4.3.a). In addition, small single algae (< 15 µm length) for 

Rhodomonas, small centric diatoms and single cells of e.g. 

Chrysochromulina were counted at a magnification of 400x in 

Figure 4.3 b). Total counts of at least 360 - 440 phytoplankton units 

of the important species were enumerated in each sample. This number of cells 

corresponds to a confidence limit of 10% (Javornicky, 1958; Lund

facilitate the enumeration of phytoplankton cells the computer programme Opticount

was used.  

Counting chamber enumeration methods a) horizontal (250x) and b) diagonal 

Identification of taxa to genus, and when possible, to species level was 

primarily through the use of a range of taxonomic references (Huber

1942, 1955, 1962, 1972, 1982, 1983; John et al., 2002; Wehr & Sheath, 2003)

training course in the University of Durham in advanced algal identification and 

taxonomy of green and blue-green algae was attended under the guidance of Prof. Brian 

Whitton and Dr. David John was attended. Dr. Norman Allott, Dr. Helder Pereira 

merated. Enumeration was conducted as follows (Figure 4.3): the chamber was 

scanned at a magnification of 250x in a series of horizontal transects. All ciliates and 

), large colonies and filaments (e.g. 

) were counted (Figure 4.3.a). The same 

, filaments or trichomes (e.g. 

Crucigenia, Sphaerocystis, 

) and larger algae (> 15 µm length) (Cosmarium, 

) were identified and counted in the second half chamber (separated by the 

a). In addition, small single algae (< 15 µm length) for 

diatoms and single cells of e.g. Dinobryon, 

were counted at a magnification of 400x in 

440 phytoplankton units 

h sample. This number of cells 

(Javornicky, 1958; Lund et al., 1958). To 

facilitate the enumeration of phytoplankton cells the computer programme Opticount 

 

Counting chamber enumeration methods a) horizontal (250x) and b) diagonal 

Identification of taxa to genus, and when possible, to species level was achieved 

(Huber-Pestalozzi, 1983, 

, 2002; Wehr & Sheath, 2003). A 

training course in the University of Durham in advanced algal identification and 

green algae was attended under the guidance of Prof. Brian 

Allott, Dr. Helder Pereira 
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(Trinity College Dublin) and Pierisa Panzani (Institute of Ecosystem Study, Verbania 

Pallanza, Italy) aided taxonomical classification. Some taxa were not discriminated 

beyond general groupings, such as small centric diatoms (considered to be Cyclotella 

spp.) and all pennate diatoms smaller than 15 µm were combined onto one group, and 

thus represent an understimation of Bacillariophyta species. A common small 

Cryptophyta with a typical pointed apex was named Chroomonas/Rhodomonas acuta 

(Leitao & Leglize, 2000; Palsson & Graneli, 2004) as it was morphologically similar to 

Chroomonas acuta, but also to Rhodomonas minuta/Plagioselmis nanoplanktonica 

(Novarino et al., 1994; Novarino, 2002). Chroomonas/Rhodomonas minuta was 

distinguished by its round apex (Barone & Naselli-Flores, 2003; JavornickN, 2003). A 

further unidentified algae, was a round single cell (with a diameter of 4-5 µm) 

characterized by the absence of flagella, which could be derived from broken colonies 

of Chlorophyta. For this study, these cells were enumerated separately as unicellular 

autotrophs.  Unidentifiable broken filaments were present in samples collected over the 

summer months.  The characterisation of auto- and mixotrophic species was carried out 

according to Tranvik (1989), Lewitus (1994), Jansson et al. (1996), Isaksson et al. 

(1999), Geider & MacIntyre (2002). Typically mixotrophic species (Dinoflagellata and 

certain Chrysophyta (Chromulina, Chrysococcus, Dinobryon, Ochromonas and 

Pseudopedinella) and potentially mixotrophic taxa (Chlorococcales, Cryptomonas and 

Chroomonas/Rhodomonas) were put into one group and considered as “potentially 

mixotrophs”. 

 

4.3.3.2.1 Conversion of counting numbers to cell density 

Calculation of cell density (cells mL-1) was achieved by dividing the number of algal 

units (coenobia, colonies, filaments etc.) encountered in the chamber by the sample 

volume. Cells enumerated in the half chamber were multiplied by two. For the smaller 

cells (< 15 µm) the calculation required knowledge of the area of the chamber bottom 

(i.e. 500 mm2 corresponds to 2599.5 optical fields at a magnification of 400x), the area 

of the part of the chamber bottom that has been counted (e.g. 0.19 mm2 x the number of 

optical fields - 50 in one transect) and finally the number of cells counted for each 

species. The number of algal cells counted was then converted to give a concentration 

per unit volume of sample according to: 
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N = X
A

a ×  v
 

where N is the number per unit volume, X is the number of counted cells, A is the total 

effective area of the chamber, a is the number of the counting fields and v is the volume 

of the sample in the chamber. The unit of measurement was algal cells mL-1. 

 

4.3.3.2.2 Estimation of biomass 

Detailed analysis of phytoplankton populations requires not only the estimation of cell 

density, but also algal biomass. Cell numbers do not provide a representative measure 

because of the considerable variation in cell size among algal species (Smayda, 1978; 

Wetzel & Likens, 2000). A standard biomass estimate is essential for comparing the 

relative contribution of different algae between samples and aquatic systems (Potapova 

& Snoeijs, 1997; Hillebrand et al., 1999). Algal biomass was calculated by multiplying 

the number of cells of a given species counted in a sample by its average cell volume. 

Total sample/community biomass was obtained by summing the biomasses of the 

individual species. Cell dimensions of a species can vary greatly in size between 

different seasons or geographical location. For this reason, cell volume of each 

important species was determined for each sample (Wetzel & Likens, 2000).  The 

calculation of biovolume of algae and ciliates was based on geometric approximations. 

The biovolume of the dominant species were calculated according to 20 different 

geometric shapes and respective equations taken from the literature (Willén, 1976; 

Smayda, 1978; Rott, 1981; Hillebrand et al., 1999; Pohlmann & Friedrich, 2001; Sun & 

Liu, 2003; Vadrucci et al., 2007). The procedure involved the collection of digital 

photographs (Leica DFC 290) and the direct measurement of the linear dimensions 

(length, width and height) required for calculating the associated geometric cell 

volumes with a computerized image analysis system program (Leica Application Suite 

Version 2.8.1). The estimated average biovolume (µm3 cell-1) was compared with 

literature-based studies from the UK (e.g. Carvalho et al., 2007) and other international 

publications (Willén, 1976; Makarewicz, 1993; Pohlmann & Friedrich, 2001; Brettum, 

2002; Kasten, 2003; Kamenir & Morabito, 2009). The algal biomass for each species 

was calculated as follows: 

Algal biomass (mm3 m-3) = density (cell mL-1) × cellular mean biovolume (µm3 cell-1) 

× 10-3 
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4.3.3.3 Heterotrophic bacterioplankton and autotrophic picoplankton  

4.3.3.3.1 Sample filtration 

Formaldehyde fixed open water samples were processed in the laboratory following the 

method described by Daley & Hobbie (1975), Porter & Feig (1980), Caron (1983), 

Sherr et al. (1993), MacIsaac & Stockner (1993) and Kemp et al. (1993). The procedure 

was similar for bacterio- and picoplankton samples. A wetted white polycarbonate filter 

(Millipore, Ireland, type HAWPO2500) was placed on the filtering device to support the 

membrane filter in order to facilitate even distribution of the sample. Subsamples of 1 

and 5 mL were filtered onto 0.2 µm pore-sized black isopore membrane filters 

(Millipore, Ireland, type GTBP 2500) and in semi-darkness 0.1 and 0.5 mL of 0.1 µg 

mL-1 4’6’-diamidino-2-phenylindole (DAPI) were added. The whole sample was drawn 

through the filter with a vacuum pump under low pressure (5-10 kPa) (Kuuppo-Leinikki 

& Kuosa, 1989; MacIsaac & Stockner, 1993). For the picoplankton, two 5 mL 

subsamples underwent the same procedure without the addition of DAPI. The filters 

were dried after removal from the holder and mounted on glass slides directly on a 

small drop of 50% glycerol-water solution (Callieri & Stockner, 2002a). An additional 

drop of glycerol was then added followed by a round cover slip. Finally, the slide was 

pressed with caution on paper to absorb the excess of glycerol. The slides were stored at 

-20°C to minimize bleaching of the autofluorescent pigments (MacIsaac & Stockner, 

1993).  
4.3.3.3.2 Identification and cell enumeration 

The epifluorescence microscopy technique was applied to quantify the abundance and 

biovolume of heterotrophic bacteria and phototrophic picoplankton. All samples were 

enumerated on two separate occasions (in December 2009 and August 2010) at the 

CNR-ISE Institute of Ecosystem Study, Verbania-Pallanza, Italy, under the supervision 

of Dr. Cristiana Callieri (Figure 4.4). The fluorescent cells caught on the filter were 

counted under an epifluorescence microscope (ZEISS Axioplan) equipped with 

objectives specially designed for fluorescence with immersion oil and various 

filter/dichroic-mirror sets, using a total magnification of 1250x. Both bacteria and 

picoplankton were encountered using the same methodology with the only difference 

that for the former a UV filter (G365, FT395, LP420) was used, while the latter were 

examined using filters for blue (BP450-490, FT510, LP520) and green light excitation 



 

(LP510-KP560, FT580, LP590). The fluo

enumerated by random fields at the highest magnification (1250x).

Figure 4.4 – Images of autotrophic picoplankton (to the left) and heterotrophic bacterioplankton 
(to the right). 

 

At least 400 cells were counted with an upper limit set at 30 random microscope fields 

to obtain a precision of 10% 

bright blue in colour against a dark background, while other particulate matter 

fluoresced in weak yellow and could therefore easily be distinguished 

1980). Solitary cells, loose aggregates and small colonies (< 2 µm) were all considered 

to be autotrophic picoplankton (picocyanobacteria and picoeukaryotes), while single

celled rod shaped Cyanobacteria and picoeukaryotes with a diameter of 0.8

a cell length of > 2 µm were not included as they were already counted as 

phytoplankton in the sedi

orange picoeucariots can be distinguished from the red picocyanobacteria 

Antia, 1986), however no clear distinction could be made 

appeared in orange and were therefore counted as one single group. 

 

4.3.3.3.3 Conversion of counting numbers to cell density

The following formula was applied to calculate algal cell densities (cells mL

€ 
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KP560, FT580, LP590). The fluorescent cells caught on the filters were 

enumerated by random fields at the highest magnification (1250x).

Images of autotrophic picoplankton (to the left) and heterotrophic bacterioplankton 

At least 400 cells were counted with an upper limit set at 30 random microscope fields 

to obtain a precision of 10% (Lund et al., 1958). The heterotrophic bacteria appeared 

bright blue in colour against a dark background, while other particulate matter 

fluoresced in weak yellow and could therefore easily be distinguished 

. Solitary cells, loose aggregates and small colonies (< 2 µm) were all considered 

ophic picoplankton (picocyanobacteria and picoeukaryotes), while single

celled rod shaped Cyanobacteria and picoeukaryotes with a diameter of 0.8

a cell length of > 2 µm were not included as they were already counted as 

phytoplankton in the sedimentation chambers hl, 1958)

orange picoeucariots can be distinguished from the red picocyanobacteria 

, however no clear distinction could be made for the study samples. Both 

appeared in orange and were therefore counted as one single group. 

4.3.3.3.3 Conversion of counting numbers to cell density 

The following formula was applied to calculate algal cell densities (cells mL

Density = F ×
N

ml of sample ×  0.95
 

rescent cells caught on the filters were 

enumerated by random fields at the highest magnification (1250x). 

Images of autotrophic picoplankton (to the left) and heterotrophic bacterioplankton 

At least 400 cells were counted with an upper limit set at 30 random microscope fields 

. The heterotrophic bacteria appeared 

bright blue in colour against a dark background, while other particulate matter 

fluoresced in weak yellow and could therefore easily be distinguished (Porter & Feig, 

. Solitary cells, loose aggregates and small colonies (< 2 µm) were all considered 

ophic picoplankton (picocyanobacteria and picoeukaryotes), while single-

celled rod shaped Cyanobacteria and picoeukaryotes with a diameter of 0.8-1.2 µm and 

a cell length of > 2 µm were not included as they were already counted as 

hl, 1958). Generally, yellow-

orange picoeucariots can be distinguished from the red picocyanobacteria (Stockner & 

for the study samples. Both 

appeared in orange and were therefore counted as one single group.  

The following formula was applied to calculate algal cell densities (cells mL-1): 
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where F is a conversion factor which is calculated from the ratio of active filter area and 

area of field countered, which is 20,259.0 N is the mean number of cells per field and 

0.95 to account for the sample : formaldehyde ratio.  

 

4.3.3.3.4 Estimation of biomass 

Pico- and bacterioplankton cell size measurements were made for each sample. Digital 

images of fields with enough bacteria and absence of very bright and yellow particulate 

matter or particles were selected and digitized with a camera (Olympus DP 72) attached 

to the epifluorescence microscope at a magnification of 785x. The original and 

unmodified pictures were saved (Cell^B Version 3.2) and an automated image analysis 

system (Image Pro Plus Version 4.5.1) was used to assess cell volumes (length, width, 

volume) of at least 100 cells according to the algorithms given in Massana et al. (1997). 

The software allowed manual selection of individual cells, which were characterized by 

their colour and light intensity. The undesired objects were removed by comparing the 

binary image with the original one. The total pico- and bacterioplankton biomass was 

calculated from the average biovolume measure of each sample using the same equation 

used with phytoplankton: 

Pico- and bacterioplankton biomass (mm3 m-3) = total cell density (cells mL-1) × 

average cellular biovolume (µm3 cell-1) × 10-3 

 

4.4 Sediment core and trap analyses 

4.4.1 Sample preparation 

The contents of two of the three sediment trap samples were used for Loss On Ignition 

(LOI), TOC, TN and diatom analyses, while the third sample was kept in complete 

darkness and stored at -20°C for pigment analyses. Table 4.4 shows the sediment trap 

sampling dates, months and days of deployment and number of samples (n) of each 

proxy analyzed together with the number of samples analyzed in each sediment core.  

For the sediment trap samples sediment deposition rate and LOI (%) were measured for 

23 months in Feeagh and for 21 months in Guitane, while organic matter content (TOC 

and TN (%)) and diatoms were examined over 16 months in Feeagh and 15 months in 

Guitane. The samples for pigments concentrations were analysed for 9 months in 

Feeagh (November 2009 – July 2010) and 15 months in Guitane (May 2009 – July 

2010). In Feeagh, LOI was analysed at 2 cm intervals in the in- and outflow sediment, 
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cores and at every centimetre in the deepest core (20 and 40 samples, respectively). 

TOC and TN measurements were made on 10 samples in each core of both lakes, while 

pigments were analyzed at 2-cm intervals. The diatom assemblage was enumerated 

exclusively in the surface sediment. A detailed sediment core diatom reconstruction was 

available from Dalton et al. (2010).  In Guitane LOI was estimated at centimetre 

intervals, while TOC and TN were measured at 2 cm intervals from the surface to 10 cm 

depth and on a 7-10 cm interval for the rest of the core. Fossil pigments were analysed 

every 2 cm. Diatom assemblages were enumerated in a total of 10 samples were with 

higher resolution for the first 10 cm. 

 

Table 4.4 – List of sediment trap sampling dates and their deployment intervals in terms of 
total months and days and their number of samples (n) analysed in both lakes for each trap.  
The number (n) of samples analyzed in each sediment core is also given. 

 Feeagh Guitane 

                          Traps Core                                 Traps Core 

Sampling 
period 

Months
/ Days 

n n Sampling 
period 

Months
/ Days 

n n 

Sediment 
deposition 

01/04/2009 –
08/02/2011 

23         
/ 679 

9 - 19/05/2009 – 
19/01/2011 
19/01/2011  

21        
/ 611 

3 - 

LOI 01/04/2009 –
08/02/2011 

23        
/ 679 

9 20 - 40 19/05/2009 – 
19/01/2011 

21        
/ 611 

3 52 

TOC, TN 01/04/2009 – 
22/07/2010 

16          
/ 478 

8 10 19/05/2009 –
14/07/2010 

15         
/ 422 

2 10 

Pigments 20/11/2009 – 
22/07/2010 

9          
/ 245 

3 20 19/05/2009 – 
14/07/2010 

15        
/ 422 

2 27 

Diatoms 01/04/2009 – 
14/07/2010 

15.5       
/ 470 

8 1 19/05/2009 – 
14/07/2011 

15         
/ 422 

2 10 

 

4.4.2 Sediment trap deposition 

The sediment trap samples were allowed to settle for four days and then the overlying 

water was siphoned off using a wide-bore pipette. The samples were transferred into 

pre-weighed Whirl-Pak bags and dried in an oven at 30°C. The dry weight (DW), 

expressed in g of DW, was subsequently used to calculate the sediment deposition rate. 

The daily sinking sediment deposition (or flux) was calculated by dividing the DW by 

the number of days the trap was deployed in situ in the lake. The sediment deposition 

rate was obtained using the following equation:  
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g of sediment / day : 1963.49 mm2 = x : 1 mm2 

where 1963.49 mm2 corresponds to the collecting tube area (O x 0.25 mm^2 = 1963.49 

mm2). This was then converted to DW g m-2 d-1. Finally, the total sediment deposition 

was calculating by summing the different samples of dry sediment collected and 

converted to an area of one square meter:  

Total =! d

f
 

where Total is the total sediment deposition, d the dry sediment weight and f the area of 

the collecting tube.  

 

4.4.3 Sediment chronologies: 210Pb and artificial radionuclides  

One of the most important means for dating of recent sediments (0-150 years) is the 

natural radioactive isotope of lead (210Pb) (half-life of 22.3 years) and artificially 

produced radionuclides caesium (137Cs) (half-life of 30.2 years) and americium (241Am) 

(half-life of 432.2 years) (Appleby, 2001). The former is derived from natural 

atmospheric fallout, while the latter two were emitted during nuclear weapons testing 

and nuclear reactor accidents. In particular, two distinctive peaks can be detected in 

sediment cores: a first peak is linked with the atmospheric weapons tests between 1953-

63 and a second peak is associated with the Chernobyl reactor fire in April 1986. Both 

are extensively used in dating of recent sediments (Appleby, 2001).  

 

A sediment chronology, using 210Pb and 137Cs, was established for Feeagh in the 

ILLUMINATE project (Dalton et al., 2010). The sediment core collected in this project 

was correlated with this dated core by matching points on LOI stratigraphies visually, 

plotting them and adding a trend line (linear regression). This enabled a match between 

depth x in the ILLUMINATE core with depth y in the sediment core collected for this 

project. For cost reasons, no chronologies were established for the two littoral sediment 

cores collected adjacent to the in- and outflow sediment traps during this project. 

Results for those two cores were therefore reported according to depth only.  

 

The sediment core extracted from the deepest point of Guitane was analysed for short-

life radionuclides 210Pb, 137Cs and 241Am at the Bloomsbury Environmental Isotope 

Facility (BEIF) at University College London under the supervision of Dr. Handong 

Yang. Wet sediment core samples (circa 2 g) were evenly picked from the top to the 
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bottom of the sediment core and oven dried at 50°C for 24 hours. The dried samples 

(circa 0.5 g) were ground using a mortar and pestle and transferred into labelled Whirl-

Pak bags for transport. The samples were analysed by direct gamma assay using an 

ORTEC HPGe GWL series well-type coaxial low background intrinsic germanium 

detector. 210Pb was determined via its gamma emissions at 46.5 keV, and 226Ra by the 

295 keV and 352 keV gamma rays emitted by its daughter isotope 214Pb following 3 

weeks storage in sealed containers to allow radioactive equilibration. 137Cs and 241Am 

were measured by their emissions at 662 keV and 59.5 keV, respectively (Appleby et 

al., 1986).  

 

The sedimentation accumulation rate (SAR) was calculated by the unsupported 210Pb 

and was expressed both as g cm-2 y-1 and cm yr-1. Dates were determined using the 

Constant Initial Concentration (CIC) and Constant Rate Supply (CRS) model 

(Krishnaswamy et al., 1971; Appleby & Oldfield, 1978). The former model provides 

good results when uniform rate of sediment accumulation (and consequently of 210Pb) 

occurred (Appleby & Oldfield, 1978). This model assumes that the unsupported 210Pb 

accumulated on the lake bottom remains unaffected by post-depositional processes and 

decays exponentially with time. The second model is used when variations in SAR were 

detected (Appleby, 2001). Therefore, in this case the dates of the older sediments are 

calculated from the distribution of 210Pb throughout the sediment core (Appleby, 2001). 

Radiometric chronology of the sediment core taken from Guitane was applied using the 

CRS model. 

 

4.4.4 Lithology 

A preliminary visual inspection enabled broad variations in lithological composition 

(e.g. presence of sandy layers, changes in colour, presence of macrofossils) to be 

described. Wet density, dry weight and LOI measurements were conducted on all cores 

and their measurements were made using standard techniques (Bengtsson & Enell, 

1986; Boyle, 2001). In addition, sediment trap samples were measured for dry weight 

and LOI. A basic classification based on any apparent variations in sediment type 

(Troels-Smith, 1955) or colour change (using Munsell Colour Chart) was noted in field 

during the extrusion of the sediment.  
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4.4.3.1 Wet density 

Wet density (g cm-3) reflects changes in sediment composition. Wet density values were 

necessary to establish sediment accumulation rates from 210Pb analysis. Sediment wet 

density was determined using a 2 cm3 capacity brass phial. The phial was completely 

filled with sediment, paying attention to exclude air spaces. Density values were divided 

by two and expressed as g/cm3. To prevent samples cross-contamination the phial was 

washed with de-ionized water and dried before measuring the next sample.  

 

4.4.3.2 Dry weight 

Dry weight (DW) represents sediment water content. Weighted sediment samples were 

oven dried at 105°C for 12 hours. After a cooling period in a desiccator with silica gel 

(Merck DIN 55474) samples were re-weighed. Dry weight percentage values were 

calculated as follows: 

DW (%) =
DW105

WW

" 
# 
$ 

% 
& 
' × 100  

where DW105 is the weight after oven drying and WW is the wet weight. 

 

4.4.3.3 Loss On Ignition 

The Loss On Ignition (LOI) method was applied to determine variations in organic 

matter content in trap and sediment samples (Dean, 1974; Heiri et al., 2001). The 

previously dried sediment for dry weight analysis was placed in a muffle-furnace and 

fired at 550°C for a period of four hours. Ample cooling was required and samples were 

re-weighed to calculate the percentage of organic matter content lost using the 

following equation: 

LOI550 =
DW105 − DW550( )

DW105

( 

) 
* 
* 

+ 

, 
- 
- 

×100 

where DW105 and DW550 are dry weight after 105°C and dry weight after 550°C 

respectively. 
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4.4.5 Geochemistry 

4.4.5.1 Total organic carbon and total nitrogen  

Where samples contain inorganic carbon and the organic carbon content of a sample is 

to be measured using elemental analysis, samples must be pre-treated to remove 

inorganic carbon. This procedure from sediment trap and sediment core samples 

followed the vapour acidification method proposed by Harris (2001) and Bianchi 

(1997). Approximately 30-40 mg of dried sediment was placed together in a beaker 

filled with circa 150 mL of concentrated HCl (37%) in a desiccator in a fume cup-

board. The fumes decomposed any CaCO3 present in the samples (Bianchi et al., 1997). 

After four hours the samples were dried in an oven at 60°C for six hours. The samples 

were removed from the oven and reweighed. The weight loss represented the inorganic 

carbon content of the original dry samples.  

 

The analyses of a total of 29 sediment trap and 40 sediment core samples from both 

lakes was carried out at the Institute of Technology in Dundalk under the supervision of 

Dr. Eleanor Jennings. Approximately 5 mg of treated sample was transferred into small 

silver cylinders, compressed using tweezers and placed on the numbered carousel of the 

CHNS-O Elementar Analyzer (vario El cube). The instrument combusted each 

subsample at a high temperature (850°C to 1100°C) in an oxidizing atmosphere and 

then separated the gaseous products by chromatography (Verardo et al., 1990). Known 

amounts of standards of sulfanilamide were included at the beginning of each run and 

after every eight samples. A computer reads the element concentration from the detector 

signal, and the sample weight on the basis of stored calibration curves. Elemental 

weight percentage composition of TOC and TN was used to calculate the C/N ratio. 

 

4.4.6 Biological remains  

4.4.6.1 Pigments analysis 

Even though, a pigment profile from the deepest part of Feeagh was already available in 

Dalton el al. (2010), a second investigation permitted a more detailed analysis of 

temporal palaeoecological variability and historical catchment change. In Dalton el al. 

(2010) the pigment analysis determined only a small selection of pigments (chl-a, chl-b, 

pheophytin-a, lutein, diato- and zeaxanthin) without including pigments present in 
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Cryptophyta (alloxanthin), siliceous algae (fucoxanthin) and Cyanobacteria (e.g. 

echinenone, cantha- and myxoxanthin).  In addition, a modification of the methodology 

involved the extraction of pigments from defrosted samples in organic solvents with 

sonication and grinding. While studies highlight that freeze-drying improve pigment 

extraction (Buffan-Dubau & Carman, 2000), no single method is optimal for all 

pigments or all sediment types (Buffan-Dubau & Carman, 2000; Reuss & Conley, 

2005). 

 

The algal pigment concentrations of sediment trap and sediment core samples were 

determined in the laboratories of University of Nottingham using High Pressure Liquid 

Chromatography (HPLC) unit under the supervision of Dr. Suzanne McGowan. The 

samples were freeze-dried just before extraction and analysis of the pigments.  The 

standardized analysis was carried out in semi-darkness to avoid any degradation. 

Samples were extracted overnight at -4°C in a mixture of acetone, methanol and 

deionised water (80 : 15 : 5) following Leavitt & Hodgson (2001a). Extracts were 

filtered with 0.22 µm PTFE syringe filters, dried completely under nitrogen gas and re-

dissolved in a 70 : 25 : 5 mixture of acetone, ion pairing reagent (IPR 0.75 g tetrabutyl 

ammonium acetate and 7.7 g ammonium acetate in 100 mL water) and methanol before 

injection into the HPLC system comprised of an Agilent 1200 series quaternary pump, 

autosampler, ODS Hypersil column (250 x 4.6 mm; 5 µm particle size), Waters 996 

photo-diode array detector and Waters Millenium Chromatography Manager Software. 

Separation conditions were modified from Wright et al. (1991). Each sample was 

injected with 100 µL of solvent and Chen’s et al. (2001) gradient program was applied. 

Peak areas were calibrated using commercial pigment standards (DHI, Denmark) and 

Agilent ChemStation software generated chromatogram reports for each sample. In a 

total of 100 chromatograms between 22 and 42 peaks were identified, of which 17 

peaks were included in the final analysis and interpretation. The remainder was either 

not successfully resolved by HPLC analyses or did not appear at the right retention time 

and were therefore considered unidentifiable pigments. Concentrations were reported in 

nanomoles of pigment relative to the organic material in the dry sediment (nmol g-1) as 

estimated by LOI at 550°C.  Ratios of labile : stable pigments (chlorophyll-a : 

pheophytin-a) were used to identify the degree of pigment preservation in each sample 

(Patoine & Leavitt, 2006; Reuss et al., 2010; McGowan et al., 2011). High ratios 

indicate good preservation and are often observed when algal production increases 



 67!

(Leavitt et al., 1997).  The UVR-index was calculated as a measure of water clarity by 

dividing the concentration of UVR-absorbing compound relative to the sum of four 

abundant and stable carotenoids (alloxanthin, diatoxanthin and lutein/zeaxanthin) and 

multiplying by 100 (Leavitt et al., 1997; McGowan et al., 2011).  

 

4.4.6.2 Diatom analysis 

The preparation of diatom microscope slides from sediment trap and sediment core 

samples followed the methodology proposed by Battarbee et al. (2001). A known 

quantity of sediment was placed in 12 mL plastic centrifuge test tubes to which 5 mL of 

H2O2 (30% v/v) was added. Digestion of samples was achieved in a water-bath at 60°C 

until oxidation was complete (Blanco et al., 2007). The volume of the suspension was 

regularly controlled to avoid complete desiccation. After digestion 1-2 drops of 10% 

(v/v) HCl were added to eliminate any remaining H2O2 and any carbonates. Afterwards 

the centrifuge test tubes were topped up and washed with deionised water and were put 

in a centrifuge for 6 minutes at 600 rpm. The supernatant liquid was decanted and the 

washing procedure was repeated four times. Samples were stored in glass vials and few 

drops of NH3 were added to prevent frustule clumping.  

 

To prepare diatom slides a small amount of sample solution was diluted with deionised 

water and transferred onto microscope slide cover slips. Two different concentrations 

were prepared for each slide to facilitate enumeration. Samples were dried at room 

temperature for 1-2 days. A drop of mounting medium (Naphrax) was put on a glass 

slide on a hotplate at c. 80°C and the inverted cover slip with the completely dried 

diatoms was placed over the drop. The slide was heated on the hotplate to evaporate the 

toluene in the Naphrax. The slide was then allowed to cool. 

 

Diatom concentration was determined following the microsphere (divenylbenzene) 

addition method proposed by Battarbee & Kneen (1982) and Battarbee et al. (2001). 

Using a micropipette 100 µL of 6.23 x 106 microspheres mL-1 suspension was added to 

the previously prepared digested samples. Microspheres were counted separately during 

diatoms counts and frustule concentration was then obtained using the following 

equation (Battarbee et al., 2001): 
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Frustule.concentration =
Microspheres introduced ×  diatoms counted

Microspheres counted
 

Frustule concentration was expressed as frustule per gram of dry (trap) and wet (core) 

sediment.  

 

Mean daily accumulation rate per sampling period was calculated from the calculated 

frustule concentration in the sediment trap samples divided by the number of days of 

exposure, in order to take into account the different time periods between sampling 

dates.  

 

Diatom valve identification and enumeration was achieved using a Leica DME 

microscope with an oil immersion objective at 1000x magnification (Figure 4.5). The 

microscope was coupled with a Leica camera (DFC 290) and Leica Application Suite 

(Version 2.8.1) software to capture and manage photographic images. In order to ensure 

representative samples, a minimum of 400 valves per sample were enumerated for each 

sample in horizontal transects. Single valves were used as the basic counting unit. 

Furthermore, diatom fragments were counted based on a system of recognisable ends 

for certain species (e.g. Eunotia incisa) and central areas of others (e.g. Tabellaria 

flocculosa). Abundances were expressed as percentages of the total diatom count.  

Taxonomic identification and nomenclature was achieved according to Krammer & 

Lange-Bertalot (1986; 1988; 1991a; 1991b), Lange-Bertalot (1996), Kelly et al. (2005), 

Houk  et al. (2010) and Guiry (2007). Moreover, the subdivision of the community into 

benthic, planktonic and tychoplanktonic taxa was achieved using a number of published 

sources (Tuchman, 1996; Gibson et al., 2003; Kelly et al., 2005; Jones, 2007; Podaner 

& Potapova, 2007). This was supplemented by two diatom workshops held by Dr. 

Nadia Solovieva and Dr. Manel Leira at Trinity College Dublin. Taxonomy 

identification of Cyclotella spp. was confirmed by Prof. John Anderson (Loughborough 

University, UK). Dr. Barry O’Dwyer (Trinity College Dublin) aided taxonomical 

classification of Aulacoseira spp. Species counts were transformed into percentage 

abundances and taxa with relative abundance > 1% in at least two samples through the 

core formed the working datas 

 



 

Figure 4.5 - Images of some diatom taxa in Feeagh and Guitane: (1) 
minutissimum; (2) Cymbella microcephala
stelligera; (5) Aulacoseira alpigena 
leptostauron var. martyi
Gomphonema angustum
Navicula placentula.  

!
4.5 Data analyses 

4.5.1 Exploration of environmental and biological 

The analysis of environmental and biological data was performed on the monthly 

measurements over the annual cycle (April 2009 

were plotted for each measured environmental variable in Data

69!

 

  

 

 

Images of some diatom taxa in Feeagh and Guitane: (1) 
Cymbella microcephala; (3) Cyclotella kuetzingiana

Aulacoseira alpigena (girdle view); (6) Eunotia hexaglypha
martyi; (8) Fragilaria capucina var. vaucheriae; (9) Fragilaria exigua

Gomphonema angustum; (11) Gomphonema clavatum; (12) Meridion circulare

 

4.5.1 Exploration of environmental and biological data 

The analysis of environmental and biological data was performed on the monthly 

measurements over the annual cycle (April 2009 – May 2010). Frequency histograms 

were plotted for each measured environmental variable in Data-Desk (Version 6.1). The 

 

 

 

 

 

 

Images of some diatom taxa in Feeagh and Guitane: (1) Achnanthidium 
Cyclotella kuetzingiana; (4) Cyclotella 

Eunotia hexaglypha; (7) Fragilaria 
Fragilaria exigua; (10) 

Meridion circulare; (13) 

The analysis of environmental and biological data was performed on the monthly 

May 2010). Frequency histograms 

Desk (Version 6.1). The 
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plots enabled decisions on whether log10 or no data transformation was best (Ebdon, 

1977). Several variables showed a skewed distribution and required transformation. TP, 

DMRP, TN, NO3-N, chl-a and DOC were log10-transformed.  Correlation between 

environmental variables was examined using Spearman’s rank correlations in Sigmaplot 

(Version 11.0). Highly correlated environmental variables (r ? -0.618 or r P 0.618) were 

excluded from further analysis.  

 

A series of multivariate statistical analysis were applied to the physical-chemical and 

biological data using Canoco (for Windows 4.5) and Primer-E 5 (Version 5.2.6 for 

Windows) software (Plymouth Routines in Multivariate Ecological Research, Plymouth 

Marine Laboratory, Plymouth, UK) (Clarke & Ainsworth, 1993; Clarke & Gorley, 

2001a). First, the biological variables (different algal groups, picoplankton, 

bacterioplankton and ciliates) were root square transformed. Ordination Analysis and 

multidimensional scaling (MDS) were applied. Further, patterns in community structure 

identified by MDS analyses were linked to environmental variables (based on Euclidean 

distance similarity index) by using the BIOENV method. The procedure calculates a 

measure of agreement between the two similarity matrices by Spearman correlation, 

which ranks the subsets of variables that best ‘matches’ the biological patterns (Clarke 

& Ainsworth, 1993; Clarke & Gorley, 2001a). Limitations of Primer-E 5 and the 

unavailability of access to the newer version of Primer (Version 6) prevented 

determination of significance. This facility was available in ordination analysis, which 

was adopted as the preferred multivariate data analysis technique. 

 

4.5.1.2 Ordination Analysis  

Relationships between biological and environmental variables were assessed using 

direct gradient analysis. First, a Detrended Correspondence Analysis (DCA) of the 

biological variables was run to determine whether linear or unimodal ordination 

methods should be applied (ter Braak & Šmilauer, 2002). Because the length of the first 

axis resulting from the DCA was less than three (0.905 Std. dev.), a linear method 

(redundancy analysis or RDA) was applied (ter Braak & Šmilauer, 2002). Significant 

explanatory variables were determined by automatic forward selection. Monthly 

samples over one annual cycle (April 2009 – May 2010) from both lakes were used for 

this analysis.  
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4.5.2 Palaeolimnological data 

Stratigraphic plots for each lithological, geochemical and biological proxy were 

created using C2 software (version 1.3) (Juggins, 2003). Stratigraphically 

Constrained Incremental Sum of Squares cluster analysis (CONISS) using 

Euclidean distances was used to reveal the timing of major changes in the 

sediment pigments and diatom assemblages from Guitane. Pigment and diatom 

abundance (in %) data were input in PSIMPOLL 4.27 software (Bennett & 

Willis, 2002) and only significant zone boundaries were selected. The statistical 

significance of the zone boundaries was tested using the broken-stick model 

(Bennett, 1996). 
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Chapter 6 - Spatial and temporal changes in sediment deposition 

 

 

6.1. Introduction 

The installation of three sediment traps (inflow, deepest and outflow) in Feeagh and 

Guitane permitted the collection of authochtonous and allochthonous matter falling 

through the water column and enabled the calculation of daily and total sediment 

deposition rates. Trap samples were examined for lithology, geochemistry and 

biological characteristics. Surface sediments from adjacent sediment cores were also 

analysed for the same parameters. Measurements of water column chl-a and 

contemporary diatom assemblages (detailed in Chapter 5) were compared with the trap 

and surface sediments. The term “flux” is used in this chapter and relates to the 

deposition of sediment, diatom valves and algal pigments collected in each sediment 

trap. 

 

6.2 Sediment deposition 

The rates of sediment deposition were estimated on a daily basis (g m-2 d-1) and are 

depicted separately for Feeagh (Figure 6.1 a) and Guitane (Figure 6.1 b) (Appendix J). 

In Feeagh the daily sediment deposition rate was calculated over 23 months and 9 

sample periods from 1st April 2009 to 8th February 2010 (see Table 4.3) and ranged 

from 0.6 to 7.93 g m-2 d-1, with means of 4.1 g m-2 d-1 (inflow), 3.8 g m-2 d-1 (deepest) 

and 2.6 g m-2 d-1 (outflow). The deposition rates were clearly higher at the inflow 

compared to the deepest and outflow traps on seven of the nine occasions sampled. The 

highest sediment deposition was measured between May and July 2009, with estimated 

deposition of 7.9 g m-2 d-1 (inflow), 6.9 g m-2 d-1 (deepest) and 5 g m-2 d-1 (outflow). The 

second highest rate was measured between December 2009 and January 2010, with 6.1 

g m-2 d-1 (inflow), 5.4 g m-2 d-1 (deepest) and 4.4 g m-2 d-1 (outflow), whilst the lowest 

was between January and March 2010, with 1.6 g m-2 d-1 (inflow), 0.8 g m-2 d-1 

(deepest), and 0.6 g m-2 d-1 (outflow).  
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The sediment trap deposition rates were lower in Guitane relative to Feeagh and only 

minor differences were evident between the three collecting stations (Figure 6.1 b). The 

deposition rate was calculated over 21 months and three sampling periods between 10th 

May 2009 and 19th January 2011. The fluxes ranged from 0.3 to 1.5 g m-2 d-1 with 

means of 0.9 g m-2 d-1 (inflow), 0.5 g m-2 d-1 (deepest) and 0.8 g m-2 d-1 (outflow). The 

highest sediment deposition was measured between May 2009 and January 2010 with 

1.5 g m-2 d-1 of sediment at the inflow and outflow traps. No data are available for the 

deepwater trap as the sample was lost on retrieval on the 25th January 2010. The lowest 

sediment load was accumulated between January and July 2010 with 0.4 g m-2 d-1 at the 

inflow and 0.3 g m-2 d-1 at the outflow.  

 

a) 

 
b) 

 
Figure 6.1 – Daily sediment deposition (g m-2 d-1) at inflow, deepest point and outflow traps in 
a) Feeagh during periods of deployment between April 2009 and February 2011 and in b) 
Guitane between May 2009 and January 2011. Specific dates correspond to trap sample 
collection and re-deployement. The asterisk (*) indicates the shorter sampling period of the 
inflow trap. No data for deep water trap from Guitane January 2010 (**). 

 

The estimated cumulative sediment deposition rates (g m-2) in both lakes are shown in 

Figure 6.2 and are presented in Appendix J. No deep trap samples from Guitane were 
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available from May 2009 to January 2010. The cumulative deposition in the inflow trap 

was 4.1 times lower in Guitane than in Feeagh. The total deposition rate ranged between 

1,750 and 2,656 g m-2 in Feeagh and was highest at the inflow and lowest at the 

outflow. In comparison, the total deposition rate ranged between 584 and 648 g m-2 in 

Guitane at the out- and inflow, respectively.  

 

Feeagh 

 

 

 

Guitane 

Figure 6.2 – Cumulative sediment sinking flux (g m-2) for inflow, deepest and outflow traps for 
Feeagh and Guitane. No data for deep water trap from Guitane. 

 

6.3 Organic matter content 

In Feeagh the average organic matter content (LOI550%) was 23.9% (inflow), 27.3% 

(deepest) and 30.7% (outflow). The overall trend of organic content co-varied in the 

three sampling stations over time (Figure 6.3 a). Raw data are presented in Appendix J. 

The highest percentages were evident in the samples collected from April to May 2009 

and from January to March 2010, while the lowest organic matter content was measured 

between May and July 2009 (after the flood event on 2nd July 2009). The organic matter 

content of the top centimetre of the three corresponding sediment cores were generally 

higher with 32% LOI (inflow and deepest) and 45.4% LOI (outflow).  

 

In Guitane the average organic matter content of the sediment trap samples (Figure 6.3 

b) at the inflow, deepest, and outflow positions was 28.8%, 26.0% and 30.1%, 

respectively. Little variation was evident in both in- and outflow traps over the whole 

sampling period. The organic content of the trap records from the deepest point 

decreased from 29.1% to 22.9% in the sediment collected between two sampling 

periods (January to July 2010 and July 2010 to January 2011). The organic matter 

content of the surface sediment from deepest point was similar with 21.6% LOI.  
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a) 

b) 

 
Figure 6.3 – Organic matter content (LOI%) of sediment trap samples collected at the inflow, 
deepest and outflow traps in a) Feeagh between April 2009 and February 2011 (n=9) and in b) 
Guitane between May and July 2011 (n=3). The asterisk (*) indicates the shorter sampling 
period of the inflow trap. No data for deep water trap from Guitane January 2010 (**). The 
organic matter content of the adjacent surface sediments (0-1 cm) is shown to the right of each 
graph. 

 

 

6.4 Total organic carbon and total nitrogen 

TOC content of the sediment trap samples from Feeagh (Figure 6.4 a) ranged from 

4.9% to 18.2%, with means of 9.3% (inflow), 11.5% (deepest) and 13.1% (outflow). 

Narrower oscillations and lower TN concentrations of 0.3% and 1.3% were evident 

(Figure 6.4 b), with overall averages of 0.5% (inflow), 0.7% (deepest) and 0.9% 

(outflow). Raw data are presented in Appendix J.  
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a) 

b) 

c) 

 

d) 

Figure 6.4 – TOC (%) and TN content (%) of sediment trap samples collected at the inflow, 
deepest and outflow traps in a) and b) in Feeagh between April 2009 and July 2010 (n=24) and 
in c) and d) in Guitane between May 2009 and July 2010 (n=5). The asterisk (*) indicates the 
shorter sampling period of the inflow trap. No data for deep water trap from Guitane January 
2010 (**).  The organic matter content of the adjacent surface sediments (0-1 cm) is shown to 
the right of each graph.  
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TOC and TN varied spatially and temporally. Generally lower values were recorded at 

the inflow and TOC and TN were lowest in the sediment samples collected between 

May and July 2009. Concentrations increased gradually during the following months in 

the three traps. The percentages of TOC and TN measured in the adjacent surface 

sediments had slightly higher concentrations (13.4-19.1% TOC and circa 0.8% TN).  

 

In Guitane TOC in the sediment trap records (Figure 6.4 c) ranged from 12.4% to 

15.3%, with a mean of circa 13.8% in the inflow and outflow traps. TOC concentrations 

decreased from 15.3% to 12.4% and from 14.1% to 13.2% in the outflow trap between 

January and July 2010. TN values generally fluctuated around 1% (Figure 6.4 d).  The 

TOC and TN in the surface sediment was half the concentration of the sediment trap 

samples: TOC was 7%, while TN was 0.5%.  

 

The C/N ratio of the sediment trap samples and surface sediments from Feeagh are 

shown in Figure 6.5 a. The C/N ratios of the trap samples ranged from 11.5 to 20.2, 

with means of 17.2 (inflow), 16.8 (deepest) and 15.4 (outflow). The greatest variation in 

C/N ratios was evident at the ouflow trap ranging from 11.5 to 18.6. The spatio-

temporal variation was clearly evident with highest ratios at the deepest point from 

April to May 2009 and the inflow trap from October to November 2009. Lowest ratios 

of c. 11 were measured at the outflow trap between July and November 2009. The 

surface sediments in Feeagh revealed C/N ratios of 20.0 (inflow), 16.8 (deepest) and 

21.1 (outflow).  

 

In Guitane the C/N ratio of trap samples were similar in each sampling location and 

showed minor temporal variation (Figure 6.5 b). The C/N ratios ranged from 12.0 to 

13.4 and the overall averages were 12.7 (inflow), 12.0 (deepest) and 12.6 (outflow). The 

surface sediment from the deepest part of the lake had a C/N ratio of 13.4.  
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a) 

b)  

 

Figure 6.5 – Carbon/Nitrogen ratio of sediment trap samples at the inflow, deepest and outflow 
traps a) in Feeagh collected between 1st April 2009 and 22nd July 2010 (n =24:) and b) in 
Guitane between 19th May 2009 and 14th July 2010 (n=5). The C/N ratios of the adjacent surface 
sediments in both lakes (n=3 and 1, respectively) are depicted to the right. The asterisk (*) 
indicates the shorter sampling period of the inflow trap. No data for deep water trap from 
Guitane January 2010 (**). 

 

6.5 Pigments  

Pigment extracts from sediment trap, surface sediment and sediment core samples (see 

Chapter 7) revealed complex mixtures of pigments and their derivatives. Of the 17 

pigments identified seven belonged to chlorophylls, nine to carotenoids and one was an 

UV radiation-absorbing compound (Table 6.1). The chlorophyll pigments included chl-

a, chl-b, chl-c2 and their derivatives chl-a’, pheophorbide a’, phaeophytin-a and 

phaeophytin-b. Carotenoids included !-carotene, alloxanthin, aphanizophyll, 

canthaxanthin, diatoxanthin, echinenone, fucoxanthin, lutein/zeaxanthin (appeared as 

one peak and could not be differentiated) and myxoxanthin. The UV-pigment was 

classified as an UV-absorbing compound A-type (McGowan pers. comm.).  
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Table 6.1 – Pigments identified ( ) in sediment trap and surface sediment (0-1 cm depth) in 
Feeagh and Guitane 

Affinity Feeagh Guitane 

Pigment type Pigment Traps Surface 
Sediment 

Traps Surface 
Sediment  

All algae and plantae 

Chlorophyll chl-a     

Chl-derivative chl-a’     

Chlorophyll chl-c2  - - - 

Chl-derivative Pheophytin-a     

Chl-derivative Pheophorbide-a’     

Carotenoid !-carotene     

Diatoms, Dinophyta, Chrysophyta 

Carotenoid Fucoxanthin     

Carotenoid Diatoxanthin     

Chlorophyta, Euglenophyta, all plantae 

Chlorophyll chl-b     

Chl-derivative Pheophytin-b     

Chlorophyta/Cyanobacteria 

Carotenoid Lutein/Zeaxanthin     

Cyanophyta 

Carotenoid Aphanixophyll - -   

Canthaxanthin     

Echinenone -  -  

Myxoxanthin -  - - 

Cryptophyta 

Carotenoid Alloxanthin     

UV-compound 

UV-compound Compound-A type -  -  

 

The ratio of chl-a to pheopigment-a, a measure of preservation conditions, was very low 

in the Feeagh trap and surface sediment core sample (range 0.03 – 0.99).  A total of 13 

pigments were identified in the trap samples in Feeagh (Appendix K for more details). 

The total amount of pigments (Figure 6.6) ranged from 59.9 nmol g-1 to 468.7 nmol g-1, 

with means of 160.7 nmol g-1 (inflow), 226.3 nmol g-1 (deepest) and 136.7 nmol g-1 

(outflow). The total pigment concentration of each trap sample increased progressively 

from November 2009 to July 2010, with generally lower concentrations in the outflow 

trap. A large increase in concentration (to 468.7 nmol g-1) was evident between June 

and July 2010 in the deepest water, while in- and outflow traps registered smaller rises 

to 232.9 nmol g-1 and 206.9 nmol g-1, respectively. A parallel increase in chl-a 

concentrations was measured over the same period in the surface waters (Figure 5.9 and 

6.6). A major rise of chl-a was evident from 0.2 µg L-1 to 0.8 µg L-1 between March and 



 119 

June 2010 and a minor increase from 0.8 µg L-1 to 1.45 µg L-1 between June and July 

2010.   

 

Chl-a and its derivation products dominated each sediment trap sample and 

pheophorbide-a’, was the most prominent degradation product. Pigments belonging to 

diatoms, Dinoflagellata and Chrysophyta (diatoxanthin and fucoxanthin) reached the 

highest abundance in the trap sediment collected between March and June 2010 (40.6 

nmol g-1 at the inflow and 64.6 nmol g-1 at the deepest point). Pigments present in 

Chlorophyta, Euglenophyta and plantae (chl-b and pheophytin-b peaked in the inflow 

trap in two samples collected between March and July 2010 and in the deepest and 

outflow traps accumulated from November 2009 to January 2010. Pigments belonging 

to Chlorophyta/Cyanobacteria (lutein/zeaxanthin) and to Cryptophyta (alloxanthin) 

showed a progressive increase between June and July 2010. Traces of cyanobacterial 

pigments (canthaxanthin) were found in the three traps on two occasions in the late 

summer samples (June-July 2010).  

 

A total of 15 pigments were identified in the three surface sediments in Feeagh. The 

total pigment concentrations were similar in the in- and outflow surface sediments (83 

nmol g-1 and 81 nmol g-1 respectively) and highest at the deepest point with 150 nmol g-

1. Pigments present in all algae and plantae (chl-a and its by-products) dominated the 

surface sediment sample at the deepest part of the lake (63.9 nmol g-1), while pigments 

present in Chlorophyta, Euglenophyta and plantae (chl-b and pheophytin-b) were the 

most abundant pigments in the in- and outflow surface sediments (35.2 and 31.0 nmol g-

1, respectively). The concentrations of siliceous algal (diato- and fucoxanthin) and 

Cryptophycean pigments (alloxanthin) were always higher at the deepest compared to 

the other two sites.  

 

The ratio of chl-a to pheophytin-a, of the trap and surface sediment samples in Guitane 

ranged from 0.06 to 3.7. The highest ratios (3.4 and 3.7) were found in deepest trap 

samples collected between January and July 2010. In Guitane a total of 13 pigments 

were identified in five sediment trap samples (Figure 6.7 and Appendix K for raw data). 

The total pigment abundance ranged from 172.1 to 1,019.1 nmol g-1, with means of 

284.2 nmol g-1 (inflow) and 542.9 nmol g-1 (outflow). The first period of accumulation 

from May 2009 to January 2010 showed similar total pigment concentrations in the in- 
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and outflow traps (172.1 and 189.0 nmol g-1 respectively). The total concentrations 

increased in trap sediments accumulated between January and July 2010, with lowest 

values at the inflow (396.3 nmol g-1) and highest at the deepest point (1,019.1 nmol g-1). 

The trap samples appear to track the monthly open water chl-a concentration in 

Guitane, which showed a typical seasonal pattern reaching the highest levels over the 

summer months (Figure 5.21 and Figure 6.6). 

 

A more detailed examination of the abundance of pigments identified shows that chl-a 

and its derivation products dominated the inflow (87.6 and 246 nmol g-1) and the 

deepest (652.8 nmol g-1) trap samples that were collected between May 2009 and July 

2010. The sediment at the outflow was dominated by pigments belonging to 

Chlorophyta, Euglenophyta and plantae (chl-b and pheophytin-b) with 356.7 nmol g-1. 

Relatively high amounts of siliceous algal pigments (fucoxanthin (227.5 nmol g-1) and 

diatoxanthin (132.9 nmol g-1) were recorded in the deepest and outflow traps between 

January and July 2010. Pigments belonging to Cryptophyta (alloxanthin) and 

Cyanobacteria (aphanizophyll and canthaxanthin) were present with low concentrations 

in each sample.  

 

Fifteen pigments were identified in the surface sediment sample at the deepest point in 

Guitane. The total pigment concentration in the surface sediment was 341.7 nmol g-1. 

Chlorophyll and its derivation products were the most abundant pigments, followed by 

pigments present in Cyanobacteria (aphanizophyll, echinenone and canthaxanthin), 

Cryptophyta (alloxanthin), Chloro- and Euglenophtya and plantae (chl-b and 

pheophytin-b), Chlorophyta/Cyanobacteria (lutein/zeaxanthin) and siliceous algae 

(fuco- and diatoxanthin).  

 



 
1
2
1

 

  
 

 
F

ig
u

re
 6

.6
 –

 A
lg

al
 p

ig
m

en
t 

co
n

ce
n
tr

at
io

n
s 

(n
m

o
l 

g-1
) 

o
f 

th
e 

id
en

ti
fi

ed
 t

ax
o
n
o
m

ic
 g

ro
u
p
s 

(s
ee

 l
eg

en
d
) 

m
ea

su
re

d
 i

n
 s

ed
im

en
t 

tr
ap

s 
an

d
 s

u
rf

ac
e 

se
d
im

en
t 

sa
m

p
le

s 
fr

o
m

 i
n

fl
o

w
, 

d
ee

p
es

t 
an

d
 o

u
tf

lo
w

 s
am

p
li

n
g
 s

ta
ti

o
n
s 

in
 F

ee
ag

h
. 

O
p
en

 w
at

er
 c

h
l-

a
 c

o
n
ce

n
tr

at
io

n
s 

(µ
g
 L

-1
) 

(d
as

h
ed

 l
in

e)
 a

re
 i

n
cl

u
d
ed

 f
o
r 

th
e 

d
ee

p
es

t 
sa

m
p

li
n

g
 s

ta
ti

o
n
 



 
1
2
2

 

 
F

ig
u

re
 6

.7
 –

 A
lg

al
 p

ig
m

en
t 

co
n

ce
n
tr

at
io

n
s 

(n
m

o
l 

g-1
) 

fr
o
m

 i
n
fl

o
w

, 
d
ee

p
es

t 
an

d
 o

u
tf

lo
w

 s
ed

im
en

t 
tr

ap
s 

an
d
 s

u
rf

ac
e 

se
d
im

en
t 

sa
m

p
le

 (
0
-1

 c
m

) 
fr

o
m

 t
h
e 

d
ee

p
es

t 
w

at
er

s 
in

 G
u

it
an

e.
 T

h
e 

le
g
en

d
 s

h
o

w
s 

th
e 

id
en

ti
fi

ed
 p

ig
m

en
ts

 a
n
d
 t

h
ei

r 
ta

x
o
n
o
m

ic
 a

ff
in

it
ie

s.
 O

p
en

 w
at

er
 c

h
l-

a
 c

o
n
ce

n
tr

at
io

n
s 

(µ
g
 L

-1
) 

(d
as

h
ed

 l
in

e)
 a

re
 

in
cl

u
d
ed

 f
o
r 

th
e 

d
ee

p
es

t 
sa

m
p
li

n
g
 s

ta
ti

o
n
. 
N

o
 d

at
a 

fo
r 

d
ee

p
 w

at
er

 t
ra

p
 f

ro
m

 G
u
it

an
e 

Ja
n
u
ar

y
 2

0
1
0
 (

*
*
).

 



 123 

6.6 Diatoms 

As already shown in the previous chapter, 14 diatom species were identified in the open 

water samples in Feeagh. A total of 127 diatom taxa were enumerated in 24 sediment 

trap samples, while 69 diatom taxa were identified in the adjacent surface sediments. A 

full list of taxa and relative abundances (%) and accumulation for both lakes are 

presented in Appendix L. The discrepancy in numbers of species identified reflects the 

different sampling mediums and microscopy constraints. The open water diatom 

samples were collated to reflect similar time periods to the trap accumulation periods. 

Six diatom species in the water samples had abundances higher than 5 cells mL-1 and 

included mainly pelagic species such as Asterionella formosa, Aulacoseira alpigena, 

Aulacoseira subarctica, Cyclotella radiosa, Cyclotella kuetzingiana and the 

pelagic/epiphytic/epilithic Tabellaria flocculosa. Four of these species (Asterionella 

formosa, Aulacoseira spp., Tabellaria flocculosa) also predominated (" 5%) in the trap 

and surface sediment samples along with Achnanthidium minutissimum and Achnanthes 

oblongella. The mean abundance for the relative diatom assemblages in open water, 

trap, and surface sediment samples are shown in Figure 6.8.  

 

In Guitane a total of 8 species were identified in the 12 open water samples collected 

between May 2009 and April 2010. Four species identified (Tabellaria flocculosa, 

Cyclotella spp., Asterionella formosa, Aulacoseira subarctica) and the pennate group 

were encountered in at least five samples with densities greater than 5 cells ml-1. A total 

of 63 diatom species were identified in five sediment trap samples, while 33 species 

were encountered in the deepwater surface sediments. In the sediment trap and surface 

sediment samples the following species had mean percentages greater than 5%: the 

pelagic taxa Cyclotella kuetzingiana, C. comensis, C. radiosa, Aulacoseira subarctica, 

the pelagic/epiphytic/epilithic Tabellaria flocculosa and the epiphytic Achnanthidium 

minutissimum (Figure 6.9). 
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Benthic and planktonic diatom taxa encountered in both sediment trap and surface 

sediment samples are depicted in Figure 6.10 and raw data are presented in Appendix L. 

In Feeagh a seasonal pattern in the trap samples was evident, with an increase in 

planktonic diatoms from April to July in both years, while benthic diatoms dominated 

over the rest of the period. The surface sediments were mainly composed of benthic 

species in the inflow and deepest waters, while planktonic taxa predominated in the 

outflow surface sediment. In Guitane the planktonic taxa were predominant in each 

sediment trap sample and in the surface sediment from the deepest waters. 

 

Overall mean diatom accumulation rates in the sediment traps in Feeagh were generally 

less then 12.8 x 103 valves cm-2 d-1 (dry sediment). However, during planktonic peaks in 

diatom abundance between April and May 2009 accumulation rates of over 21.1 x 103 

valves cm-2 d-1 were evident (Figure 6.8 and Appendix L). The highest average diatom 

concentrations were observed over the same periods in the water column samples. The 

diatom concentration accumulation in surface sediments ranged between 8.4 x 106 

valves g-1 and 3.2 x 106 valves g-1 (wet sediment) at the in- and outflow, respectively.  

 

The seasonal occurrence of diatoms in the open water cell (density) and sediment traps 

(relative abundance) showed similarities and differences (Figure 6.8). Asterionella 

formosa was dominant in the open water samples in the late spring (May-July 2009) and 

was prominent in trap samples in July. The relative abundances of Asterionella ranged 

from 49.6% at the inflow trap to 71% and 66% at the deepest and outflow trap. A 

similar pattern was evident with pelagic colonies of Aulacoseira spp. Water column 

densities increased between April-May 2009, October-November 2009 and January-

March 2010 and corresponded to the peaks (26.6%, 19.5% and 26.2%) encountered in 

the deepest sediment trap samples. Similar data were obtained at the in- and outflow 

sediment trap samples. In contrast, high abundances of Tabellaria flocculosa were 

found in the open water samples between March and July 2009, while trap samples 

showed peaks later in the season (July-November 2009). Periphytic species 

(Achnanthidium minutissimum and Achnanthes oblongella) had low abundances in the 

open water samples and were consistently present in trap samples with percentages 

ranging from 2% to 18%.  The Feeagh surface sediment samples were dominated by A. 

formosa with 32.9% at the inflow and 17.5% at the outflow. The abundances of A. 

minutissimum and A. oblongella were higher at the deepest point (15% and 9.3%, 
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respectively) compared to the in- and outflow samples (range of 8.1% and 13.1%). T. 

flocculosa ranged between 5.4% (deepest) and 3.9% (outflow). A. alpigena had similar 

percentages at the inflow and deepest trap (3.9% and 4%, respectively), while 

abundances were low (0.4%) at the outflow.  

 

In Guitane mean diatom valve fluxes ranged between 1.1 x 103 and 1.7 x 103 valves cm-

2 d-1 of dry sediment in the five sediment trap samples and reached a diatom 

concentration of 2.4 x 103 frustules per g of wet sediment in the surface sediment. The 

relative abundances of the six most dominant taxa found in the open water, sediment 

trap and surface sediment samples are plotted in Figure 6.9 and are presented in 

Appendix M. The lower sampling resolution of the sediment traps in Guitane precluded 

detailed examination of seasonality, however the open water assemblages are illustrated 

as monthly densities for comparison. The species relative abundances co-varied at the 

three sampling stations. Cyclotella kuetzingiana was the most dominant taxon in each 

trap sample with a maximum of 44.7% in the sediment collected between May 2009 and 

January 2010 at the inflow trap. The relative abundances of C. comensis and C. radiosa 

were higher in the trap samples representing May 2009 to January 2010 (45-62%), 

compared to January to July 2010 (38-49%). Similarly, densities of Cyclotella spp. in 

open water were higher during this first period. Tabellaria flocculosa and 

Achnanthidium minutissimum abundances increased at the inflow from 11% to 14.7% 

and from 7% to 13% respectively for the same periods. Similar percentages were 

evident for the deepest water trap records collected between January and July 2010 

(17.2% and 10.5%, respectively). In comparison, Tabellaria flocculosa, the most 

abundant taxon in open water increased in December 2009, was found in relatively low 

concentrations in the trap and surface sediment samples. The diatom assemblages found 

in the deepest surface sediment were similar to the trap assemblages and were 

composed of Cyclotella kuetzingiana (36.3%), Achnanthidium minutissimum (13.3%), 

Tabellaria flocculosa (11.6%) Cyclotella comensis (7%) and Cyclotella radiosa (6%). 
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6.7 Discussion 

This chapter has described the within lake variability of sediment trap and surface 

sediment data in Feeagh and Guitane.  The following discussion focuses on how the 

balance of material falling from the water column, collected in suspended traps and 

arriving in the surface sediment can be used to augment knowledge of contemporary 

limnological processes and palaeolimnological reconstructions. Moreover, a range of 

processes that influence sedimenting material are examined. 

 

6.7.1 Comparability of open water and sediment trap data  

Open water samples encompass living communities and represent biomass in a spatially 

restricted area and at an instant in time. Sediment trap samples in contrast can 

potentially provide an integrated sample with a broader spatial and temporal coverage 

(Cameron, 1995; Rautio et al., 2000). The comparison of data from these different 

spatial and temporal sources is not straightforward as there are multiple influences, such 

as for example inflowing streams, resuspension from the lake-bed and seasonal algal 

succession. These processes can affect and alter the biological assemblage and lake 

sediment composition.  

 

The inflowing streams present in the catchment represent a significant source of 

allochthonous organic and inorganic sedimenting matter. An example of the latter is 

given by the mostly inorganic contribution of carbon (low LOI and TOC) collected in 

all trap samples after the flood event in Feeagh. Moreover, the strong spatiotemporal 

variation of C/N ratios in the sediment trap samples confirmed the influence of 

allochthonous contribution, which ranged from a typical sub-equal mixture of algal and 

vascular plant content to major peat/land plant influence (Ertel & Hedges, 1984; 

Meyers, 1994, 2003; Lamb et al., 2007; Diefendorf et al., 2008). The higher C/N ratios 

registered at the inflow trap, together with highest concentrations of chl-b and 

pheophytin-b, indicated major terrestrial sources and plant-derived pigments. Moreover, 

benthic diatoms dominated in the inflow and deepest sediment trap samples, when 

compared to the outflow sediment trap, where the pelagic community was better 

represented.  In Guitane, there was no evidence of major terrestrial inputs from inflow 

streams and the C/N ratio indicated a sub-equal mixture of algal and vascular plant 

content in both trap and surface sediments (Meyers & Lallier-Vergès, 1999; Meyers & 
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Teranes, 2001; Meyers, 2003). It therefore appears the sedimenting matter and sediment 

characteristics of Feeagh are more strongly structured by its inflowing tributaries than in 

the case of Guitane.  

 

Resuspension of material from the lake-bed and horizontal transport, which includes 

both older sediment and contemporary material and/or in some cases also dead and alive 

cells, can add a fossil component to trap samples and influence seasonal dynamics 

(Cameron, 1995; Köster & Pienitz, 2006). For example, epiphytic diatom species 

(Achnantidium minutissimum Achnanthes oblongella and Brachysira spp.) in the trap 

samples encountered in both lakes may indicate resuspension of the sediments. 

However, large, deep lakes are generally better study sites for combined sediment 

trap/palaeolimnological studies because traps are generally situated below the photic 

zone, and thus epipelic and epiphytic growth are of minor importance and thus 

constitute a minor component (Köster & Pienitz, 2006).  If the diatoms in the trap 

samples originated mainly from resuspension, then we could expect seasonal 

homogeneity of taxa. This was not the case in either study sites where seasonal 

succession was clearly evident. Seasonal succession of diatoms in open water and 

sediment trap samples has been observed in shallow (Cameron, 1995; Lotter & Bigler, 

2000; Köster & Pienitz, 2006; Hausmann & Pienitz, 2009) and deep lakes (Rautio et al., 

2000; Kirilova et al., 2008). Highest diatom concentrations in the water column and 

maximum daily diatom sedimentation and peaks in relative diatom abundances in the 

sediment traps reflected seasonality in Feeagh. The small number of samples from 

Guitane precluded similar conclusions. However, both lakes experienced an increase in 

pelagic taxa in the spring-summer samples and in benthic taxa in the autumn-winter 

samples. Moreover, in Feeagh peaks in diatom abundance encountered in each sediment 

trap sample corresponded to maximum cell densities in the open water. The percentages 

of the major diatoms in the sediment traps were also comparable to those in the water 

column in most trapping periods. For example, Aulacoseira species inhabited the 

surface waters and was reflected in trap samples during overturn (from May 2009 and 

from October to March 2010), when the water turbulence was sufficient to keep the 

species in the euphotic zone. Turbulent conditions are especially important for 

Aulacoseira subarctica because of its rapid sinking rate, resulting from its high silica 

content (Round et al., 1990).  A further example is given by the abundance of lightly 

silicified, spindle-shaped Asterionella formosa in the open water during early spring and 
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summer 2009, that corresponded to a peak in the sediment traps collected between May 

and July 2009. Peaks in Asterionella are typically related to thermal stratification 

(Köster & Pienitz, 2006). In contrast, this seasonal pattern was not reflected in 

Tabellaria flocculosa, which has also been described as an indicator of thermal 

stratification (Köster & Pienitz, 2006; Hausmann & Pienitz, 2009). Tabellaria increased 

in the water column in summer, but reached highest abundances in the sediment trap 

samples in winter. In Guitane Tabellaria flocculosa dominated the open water samples, 

while Cyclotella spp. dominated in the trap samples. Tabellaria had its highest cell 

densities in the open water in December, when the whole water column was mixing and 

available nutrients were released from the hypolimnion. Phytoplankton, including 

planktonic diatoms, are known to benefit from these nutrient rich conditions with 

increased turbulence in the water column (Gaedke & Weisse, 1998; Hausmann & 

Pienitz, 2009).  

 

Several studies have described seasonal variation in the abundance of algal pigments 

recorded in sediment trap samples (Livingstone & Reynolds, 1981; Cole et al., 1985. 

Even in the deepest trap (at 3,560 m depth) of an array of trap sets in the Panama Basin, 

the flux or deposition of algal pigments varied seasonally (Cole et al., 1985). Algal 

remains recovered from sediment traps reflected the annual phytoplankton succession in 

many lakes (Livingstone & Reynolds, 1981; Reynolds et al., 1982; Hamilton-Taylor et 

al., 1984; Bianchi et al., 2002; Yacobi & Ostrovsky, 2008). Progressive seasonal 

increases in total pigment concentrations were also evident from March to July 2009 in 

Feeagh and between January and July 2009 in Guitane, confirming a record of seasonal 

succession in sediment trap samples.  

  

6.7.2 Comparability of sediment trap and surface sediment data  

The sources and alteration of organic matter can vary substantially from place to place 

within a lake (Tenzer et al., 1997; Talbot & Laerdal, 2000) and can also vary temporally 

(Meyers & Teranes, 2001). For example, differences in TOC concentrations and C/N 

ratios in surface sediments with increasing distance from shore (Talbot & Laerdal, 

2000) and with greater water depth (Tenzer et al., 1997) have been described. Lotter & 

Bigler (2000) attributed decreases in TOC and TN content of surficial sediments in 

shallow shore regions to the presence of coarser mineral particles. Lower mean TOC 
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concentrations were found at the northernmost and shallower site in Feeagh in both 

sediment trap and surficial sediment samples, while concentrations were higher in the 

deepest and southernmost sites, where fine-grained sediments slowly settled to the lake 

bottom.  In Guitane LOI and TOC were spatially and temporally homogenous in the 

sediment traps, while concentrations were 50% lower in the surface sediments. The 

lower TOC concentrations could result from the diagenesis of organic matter (Meyers & 

Lallier-Vergès, 1999). It is known that organic matter consumption is extensive in the 

surface layers of sediments and several studies showed that generally more than 50% of 

the organic carbon reaching the lake- or seafloor is destroyed in the bioturbated layer 

(Cobler & Dymond, 1980; Prahl et al., 1989). However, comparisons of the C/N ratios 

of trap and sediment samples in both lakes showed similar values (range 11.5-19.7 

versus 18.6-20.2 in Feeagh and 11.9-13.5 versus 13.4 in Guitane), which suggests that 

these bulk parameters retain source information even when incorporated into the 

sediment record (Meyers, 1994).  

 

Major differences between the total pigment concentration in the sediment traps and 

surface sediment were observed and could probably be attributed to the sampling period 

and in part to the sampling locations. For example, surface sediment pigment 

concentrations collected in January 2011 were most similar to the winter sediment trap 

samples. In addition, pigment concentrations in the surface sediment samples from the 

deepest waters were twice as high as the shallower in- and outflow samples.  This is 

probably due to the deepwater bathymetry of the depositional area as shallow, 

oxygenated sediments are known to dilute the sediment pigment record (Sanger, 1988). 

Another possible explanation of the higher algal pigment concentrations in the deep 

water sediments could be related to higher depositional rates, which can increase the 

effective sedimentation rate of pigments into the fossil record, and thereby, decrease 

degradation at the sediment surface (Leavitt, 1993). A further explanation, suggested by 

Moss (1968), is that carotenoid pigment concentrations of sediments increase with 

water depth.  

 

Diatom assemblages in superficial sediments can vary with water depth. Lotter & Bigler 

(2000) found that assemblages within the littoral zone (8-10 m depth) were dominated 

by periphytic diatoms (mainly Fragilaria spp.), whereas in the deeper surficial 

sediments (> 10 m depth) valves of planktonic taxa (Cyclotella comensis) 
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predominated. The influence of water depth on diatom assemblages in both study lakes 

was observed and assessed. In Feeagh, the deepest surface sediment sample was 

dominated by benthic taxa, while the southernmost surface sediment sample near the 

outflow was dominated by planktonic taxa. Similarly, the sediment trap samples were 

characterized by a clear rise in benthic taxa between July 2009 and March 2009 in the 

inflow and deepest trap samples, while the outflow trap was dominated by planktonic 

taxa.  In Guitane planktonic diatoms dominated both the trap and superficial sediment 

samples.  Comparisons between trap and sediment samples in a shallower lake showed 

that high relative abundance of Asterionella spp. during summer months were not 

reflected in the sediments, while higher abundances of Cyclotella sp. were found in the 

sediments compared to the traps (Köster & Pienitz, 2006). Similar phenomena in 

Asterionella and Cyclotella sp. were observed in Feeagh and Guitane. Köster & Pienitz 

(2006) together with Rautio et al. (2000) point out that these differences may be caused 

by inter-annual variability in the seasonal cycle of the lake. Also Cameron (1995) 

suggests that surface sediments are subjected to physical (e.g. currents) and biological 

(e.g benthic organisms) bioturbation with existing surface sediment assemblages, which 

could account for a degree of dilution and (upward and downward) mixing, caused by 

the technical processes of retrieving sediment samples (e.g. smearing by the sides of the 

corer and time averaging of samples by core slicing thickness). 

 

6.7.3 Sedimentation dynamics in lakes 

Particle settling flux or sediment deposition in sediment trap samples between the two 

study sites differed spatially and temporally. In particular, the estimated cumulative 

sediment deposition rate was four times higher in Feeagh compared to Guitane. Feeagh 

had pronounced spatial and temporal variation, while the sediment deposition in 

Guitane was more homogenous, however, the number of samples collected was lower. 

 

Studies of settling particles intercepted by sediment traps in northern Estonia (Terasmaa 

& Punning, 2006) and in many boreal lakes (von Wachenfeldt & Tranvik, 2008a) 

displayed marked seasonal variation and increased particulate deposition concurrent 

with the onset of stratification in spring and summer. The sediment deposition rates or 

particle settling flux estimated in Feeagh and Guitane over nearly two years showed 

clear temporal variation. If the flash flood event is excluded in Feeagh the sediment 
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deposition was generally higher during autumn-winter when complete overturn of the 

water column occurred.  In Guitane higher sediment deposition rates were measured in 

late summer-autumn and early winter 2009 and autumn-early winter 2010, compared to 

the late winter-spring and early summer 2010. This suggests that sediment deposits are 

mainly allochthonous in nature (shown by their C/N ratios) and are influenced by a 

combination of morphometric, climatic and land-use characteristics.  

 

Several regional studies showed that morphometric catchment properties, such as 

drainage ratio, fluvial inputs, catchment slope and presence of upstream lakes have been 

found to be related to allochthonous inputs of sedimenting matter (Engstrom, 1987; 

Rasmussen et al., 1989; D’Arcy & Carignan, 1997; Weyhenmeyer & Bloesch, 2001; 

Xenopoulos et al., 2003; Sobek et al., 2007).  Lakes situated within climatically 

homogeneous regions (Sobek et al., 2007) and with a large drainage area compared to 

the lake area, and consequently with a large drainage ratio (catchment : lake area), are 

thought to receive high inputs of allochthonous particulate and dissolved matter (del 

Giorgio & Peters, 1994; Sobek et al., 2007). High concentrations of allochthonous 

suspended particle matter in lakes are known to be a precursor of sinking particles (von 

Wachenfeldt et al., 2008b), that facilitate and contribute to the flocculation, coagulation 

and subsequent sedimentation in traps and sequestration in lake sediments (Schindler, 

1971; Rasmussen et al., 1989). Feeagh has a drainage ratio of 21.4, while the ratio for 

Guitane is 7.7. This difference clearly has consequences for the terrestrial carbon inputs 

and consequently the diverse sediment deposition rates in each lake.   

 

Lake fluvial input can be higher adjacent to inflowing streams or in the centre of cone 

shaped basins (Moss, 1998). Fluvial input to Feeagh enters the lake at the northern end 

through two main inflow streams. Higher rates of deposition are generally found near 

inflows due to the rapid settling of the heavier mineral fraction. Allott et al., (2005) 

estimated sediment deposition in Feeagh over 14 months (December 2000 – January 

2002) and found 1,741 g m-2 at the inflow and 610 g m-2 at the outflow. In the current 

study cumulative deposition rates were estimated over 16 months (November 2009 - 

February 2011).  Similar rates were found in the inflow trap (1,968 g m-2), while a 

higher sediment deposition was calculated at the outflow trap (1,170 g m-2).  Guitane, in 

contrast, has one main and three small inflow rivers, however little spatial variation in 

sediment deposition rate was evident and thus no fluvial influence was apparent.  
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Lakes draining relatively large and flat catchments tend to have higher inputs of 

allochthonous suspended solids into lakes as a result of greater importance of shallow 

flow-paths through soils and greater percentages of wetland (Rasmussen et al., 1989; 

Pace & Cole, 2002; Sobek et al., 2007). In the Burrishoole catchment the presence of 

upstream lakes and the lower relief of some sub-catchments offers higher water storage 

capacity.  Allott et al. (2005) describe steep slope tributaries as “hydrologically flashy” 

due to the rapid transfer of rainfall to streams by quick-flow processes. Steep 

subcatchments are characterized by a very limited water storage capacity due to the 

presence of impermeable rock types and relatively impermeable peats and peat-podsols 

and thus, favour higher in-wash of terrestrial carbon sources. Similar flow regimes were 

described also in North Wales (Bird et al., 1990). In Guitane the steepest tributaries 

enter the lake to the south-east. The catchment contains more permeable sandstone and 

volcanic rocks overlain with peaty soils, known to be more capable of filtering through 

flows and are characterized by a higher water storage capacity.  

 

The latest Intergovernmental Panel on Climate Change (IPCC, 2007) pointed out that 

aquatic and terrestrial ecosystems are being strongly affected by climate change, 

particularly in the form of increases in regional temperature and precipitation. Several 

studies demonstrate that changes in the magnitude and seasonality of precipitation and 

runoff are expected to have significant effects on dissolved, colloidal and particulate 

carbon concentrations (Andersson et al., 1991; Pace & Cole, 2002) and water quality in 

lakes (Whitehead et al., 2006; Jennings et al., 2010; Naden et al., 2010). In Ireland a 

shift has been observed to increased total annual precipitation amounts for the west 

coast stations for the period 1957-2006 (Kiely et al., 2010). The years 2008 and 2009 

experienced the breaking of many rainfall records throughout the country (Lennon & 

Walsh, 2008; Walsh, 2010). In particular, two distinct heavy rainfall events or periods 

occurred within the two study sites: an extreme rainfall and flash-flood event occurred 

in the Burrishoole catchment on the 2nd July 2009, (Fealy et al., 2010) and prolonged 

heavy precipitation period was recorded over three weeks in November 2009 in Kerry, 

including Guitane catchment.  The Burrishoole flash flood event is described as a once 

in 250 year event (Fealy et al., 2010), while the daily rainfall in Kerry in November was 

more than twice the national average and the wettest month on record (Kiely et al., 

2010; Walsh, 2010). In Feeagh the extreme rainfall event was linked to the maximum 

sediment deposition rate collected from trap samples. In contrast, Guitane had low and 
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relatively homogenous sediment deposition rates. This shows that the intensity of the 

rainfall in Feeagh gave rise to increased inflow of allochthonous inorganic suspended 

solids (shown by low LOI and TOC), and consequently in higher sediment deposition 

rates into the lake. The availability of suspended solids is also associated with the length 

of the soil-drying period, which is related to air temperature, solar radiation and wind 

conditions, leading to impacts on soil moisture levels (Naden & McDonald, 1989; 

Davidson & Janssens, 2006). The soil drying period determines the decomposition and 

mineralisation rates of organic matter, and hence affects the transport of sediment into 

surface waters (Reynolds & Fenner, 2001a; Tranvik & Jansson, 2002; Hudson et al., 

2003; Worrall et al., 2003a). The heavy rainfall event was preceded by approximately 

six weeks of dry settled weather and it is likely that the water was unable to soak into 

the ground. Consequently, only the superficial soil strata were re-saturated and sand, silt 

and other solids were washed out rapidly (Mitchell & McDonald, 1992; Buffam et al., 

2001). Jennings et al. (2010) describes evidence of organic carbon flushing from high 

frequency measurements of CDOM fluorescence, which were used to quantify the 

fluorescent fraction of these coloured organic particles in inflows to Feeagh. 

 

Land-use in both study catchments is characterized by extensive amounts of peat soil 

(64% in Burrishoole and 83% in Guitane) representing significant carbon stores (Free et 

al., 2006). Forest cover accounts for nearly one quarter (23%) of the Feeagh catchment, 

while Guitane has none. Forested catchments generally contribute higher terrestrial 

carbon and nutrient delivery in the receiving water (Rodgers et al., 2008; Rodgers et al., 

2010b; Rodgers et al., 2011). Additionally, extensive grazing by livestock in the 

catchments has been an issue historically (CSO, 1991; Weir, 1996; CSO, 2000, 2006, 

2011).  

 

6.8 Conclusions 

The investigation of the water column chemical and biological parameters (Chapter 5), 

sediment trap and surface sediment samples (this chapter) from Feeagh and Guitane 

revealed results that are relevant for longer term palaeolimnological examination of lake 

sediment archives. The study of seasonal ecological responses and sedimentation of 

particulate and dissolved matter from both lakes informs interpretations of the sediment 

record. The within lake and between lake spatial and temporal variability reflect how 
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differences in catchment, lake size and morphometry influence sediment deposition. 

Additionally, trap samples clearly reflected seasonal algal succession (in fossil pigments 

and diatom assemblages) and interactions with climate parameters were demonstrated 

when lake ecosystem responses were evident following heavy rainfall events. The 

results of this study emphasize the interdependence of water column parameters, the 

downward flux of particulate matter and associated constituents and the balance of 

material arriving in the surface sediments. With time this material accumulates to form 

sediment archives, which are explored in the next chapter.  
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!

Chapter 7 - Sediment core reconstructions for Feeagh and 
Guitane 

!
!
7.1 Introduction  

The collection of sediment cores from Feeagh and Guitane allowed detailed 

reconstructions of lithological, geochemical and biological proxies. Three sediment 

cores were collected from Feeagh to examine spatiotemporal responses across the lake, 

while one representative core from the deepest point of Guitane was retrieved. 

Historical change in organic matter (LOI550, TOC, C/N ratio) and variations in algal 

pigments and diatoms are outlined. The reconstruction of the UVR index gave an 

indication of the depth of penetration of UV radiation within both lakes. Fossil diatoms 

were enumerated for Guitane, while a fossil diatom profile for Feeagh was assembled 

during ILLUMINATE project (Dalton et al., 2010). 

!
7.2 Sediment Chronology  

The sediment core collected from the deepest point of Feeagh was cross-correlated 

(Appendix N a and b) with a radiometric (210Pb, 137Cs and 241Am) chronology 

established by Dalton et al. (2010) from the same sampling location. The lowermost 

sample in the 40 cm long core collected for this Ph.D. project was estimated to date to 

1942. The estimated sediment accumulation rate ranged from 0.171 to 0.288 g cm-2 yr-1. 

No chronology was established for the inflow and outflow cores. Results for these cores 

are reported according to sediment depth and compared with the estimated dates for the 

deep water core. 

 

The 53 cm sediment core collected from the deepest point of Guitane was analysed for a 

natural radioactive isotope of lead (210Pb) and for two artificial fallout radionuclides 

(137Cs and 241Am). Their concentrations measured throughout the sediment core are 

listed in Appendix O. The equilibrium depth between the activity of total and supported 

210Pb was reached at c. 13.5 cm depth (Figure 7.1 a). Unsupported 210Pb activity (the 

subtraction of supported 210Pb from total 210Pb activity) can be divided into two phases: 

in the first 4 cm it declined irregularly with depth (Figure 7.1 b), suggesting an increase 



 

in sediment accumulation, while below 4 cm depth it declined more or less 

exponentially with depth, indicating a relatively uniform sediment accumulation rate.  

The radionuclide 137Cs peaked at 3.5 cm depth and traces of 

samples between 4.5 and 6.5 cm depth reaching a maximum at 6.5 cm. As the 

peak is not in the depth range where 

reflects the fallout from the 1986 Chernobyl accident. This peak along with 

sedimentation rates and the sediment sub

obscured the 137Cs fallout maximum in 1963 from the atmospheric testing of nuclear 

weapons.  
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Figure 7.1 – (a) Total and supported 
241Am (triangle) concentrations versus depth for Guitane (Graphs provided by H. Yang, UCL). 
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$oth CRS and CIC dating models (Appleby, 2001) were applied to calculate 

dates. The CRS model placed 1986 and 1963 at 3.5 and 5.5 cm, respectively, which 

conforms with the 137

at 5 and 6.5 cm deeper than those suggested by the 

disagreement between the CIC model and the 

non-monotonic variation in unsupported 

unsupported 210Pb activities (Appleby, 2001)

model is shown in Figure 7.2 and Table 7.1. Results show that the top 11.5 cm dates 

from 1840 and covers the past 170 years

relatively stable with an average of c. 0.0093 g cm

followed by a slight increase in the last thirty years. For the purpose of this research the 

recent sediments are of most interest. 
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nic variation in unsupported 210Pb activities in the top 4 cm that diluted 

Pb activities (Appleby, 2001). The chronology calculated using the CRS 

model is shown in Figure 7.2 and Table 7.1. Results show that the top 11.5 cm dates 

nd covers the past 170 years. The sediment accumulation estimate was 

relatively stable with an average of c. 0.0093 g cm-2 yr-1 from the 1850s to the 1980s, 

followed by a slight increase in the last thirty years. For the purpose of this research the 

recent sediments are of most interest. The base of the core was not dated, but based on 

in sediment accumulation, while below 4 cm depth it declined more or less 

lly with depth, indicating a relatively uniform sediment accumulation rate.  

Am were detected in the 

samples between 4.5 and 6.5 cm depth reaching a maximum at 6.5 cm. As the 137Cs 

Am appears, it is very likely that the 137Cs peak 

reflects the fallout from the 1986 Chernobyl accident. This peak along with 

sampling resolution of 1 cm has probably 

allout maximum in 1963 from the atmospheric testing of nuclear 
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Pb, and (c) 137Cs (diamond) and 

Am (triangle) concentrations versus depth for Guitane (Graphs provided by H. Yang, UCL).  

oth CRS and CIC dating models (Appleby, 2001) were applied to calculate 210Pb 

dates. The CRS model placed 1986 and 1963 at 3.5 and 5.5 cm, respectively, which 

Am records, while the CIC model places 1986 and 1963 

Cs and 241Am records. The 

Am records is possibly due to the 

Pb activities in the top 4 cm that diluted 

The chronology calculated using the CRS 

model is shown in Figure 7.2 and Table 7.1. Results show that the top 11.5 cm dates 

. The sediment accumulation estimate was 

from the 1850s to the 1980s, 

followed by a slight increase in the last thirty years. For the purpose of this research the 

The base of the core was not dated, but based on 
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linear regression of radiometric dates c. 1200 anno Domini is suggested. An accelerated 

mass spectrometry radiocarbon analysis would provide the radiocarbon age of the core 

base. The pre-1840 period (11.5 - 53 cm) changes are reported according to sediment 

depth.  
 

 

Figure 7.2 - Radiometric chronology of the sediment core taken from Guitane, showing the CRS 
model, 210Pb dates and sedimentation rates. The solid line shows age, while the dashed line 
indicates sedimentation rate (Graph provided by H. Yang, UCL). 

 

Table 7.1 - 210Pb chronology of sediment core from Guitane. 

Depth Dry mass Chronology Sedimentation Rate 

  Date Age     

cm g cm-2 AD yr ± g cm-2 yr-1 cm yr-1 ± % 

0 0 2010 0     

0.5 0.0185 2009 1 2 0.0163 0.275 7.3 

1.5 0.0890 2005 5 2 0.0172 0.183 5.3 

2.5 0.2055 1997 13 2 0.0125 0.101 4.6 

3.5 0.3365 1985 25 2 0.0104 0.079 6.3 

4.5 0.4690 1971 39 2 0.0081 0.063 6.7 

5.5 0.5940 1956 54 3 0.0088 0.065 10.1 

6.5 0.7380 1939 71 4 0.0079 0.048 14.9 

7.5 0.9235 1918 92 7 0.0104 0.053 27.9 

8.5 1.1255 1899 111 12 0.0111 0.054 46.1 

9.5 1.3310 1879 131 19 0.0099 0.049 79.1 

10.5 1.5295 1856 154 24 0.0072 0.038 100.3 

11.5 1.7125 1840 170 30 0.0112 0.062 123.0 
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7.3 Sediment Description 

The sediment cores extracted from Feeagh and Guitane did not show any apparent 

variation in sediment type and were dark in colour. The colour of the sediment cores 

from Feeagh ranged from olive black (Hue 5 Y 3/1) to brownish black (Hue 2.5 Y 3/1) 

(Oyama & Takehara, 1967) from the core bottom to the core top. The sediment from 

Guitane ranged from dark brownish (Hue 7.5 YR 2/2) to very dark brown (Hue 7.5 YR 

2/3) from the core bottom to the core top. The sediments were composed of 

homogeneous soft peaty-mud with no particular visible textural changes.  

 

7.4 Sediment Lithology 

The organic matter content (LOI550) of the three sediment cores collected in Feeagh 

ranged from 15% to 47.6%, with means of 23.2% (inflow), 36.7% (deepest) and 30.6% 

(outflow) (Figure 7.3 and Appendix P). The lowest organic matter content was evident 

in the inflow sediment core (range 15.0 – 35.2%), while the highest was measured in the 

deepest core (range 24.6 – 47.6%).  The three cores showed a steady increase of organic 

matter from the core bottom to c. 10 cm. The highest organic matter content was 

evident at c. 10 cm depth in the inflow and outflow core and at approximately 1990 (c. 

14 cm depth) in the deep water core. A decreasing trend is then evident with a minimum 

at c. 2 cm depth in each core (c. 2009 in deep water core), before LOI550 increases again 

at the top of each core. In Guitane, organic matter content was characterized by multiple 

minor peaks and troughs ranging from 10.8% to 21.6% (Figure 7.3 and Appendix P). 

Four peaks between 18% and 22% LOI at 52, 36, 13 cm depth and at c. 2009 (0.5 cm 

depth) are interspersed with troughs of 10% and 11% at 17 cm depth and at c. 1899 (8 

cm), respectively.  

 

!
!
!
!
!
!
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                                                      Feeagh                                          Guitane 

!
Figure 7.3 – % LOI550 from the inflow, deepest and outflow sediment cores collected in Feeagh 
(on the left) and the deepwater sediment core from Guitane (on the right). Estimated 
chronologies are available for the Feeagh and Guitane deepwater cores. 

!
7.5 Geochemical proxies 

7.5.1 Total organic carbon, total nitrogen and C/N ratio 

TOC content of the three sediment cores from Feeagh ranged from 7.7% to 27.1%, 

while total nitrogen concentrations varied from 0.3% to 1.3% (Figure 7.4). Raw data are 

presented in Appendix P for both lakes. TOC and TN co-varied in each sediment core. 

An increasing trend was evident in the inflow core with a peak of 17.8% in TOC and 

0.9% in TN at c. 4 cm depth. A similar increasing trend was recorded in the deepest 

core with two peaks of 25.8% and 27.1% at c. 1975 (20 cm) and c. 1991 (14 cm) 

respectively, after which followed a gradual decline to 14.3% of TOC in the surface 

sediment. The outflow sediment core also exhibited an increasing trend (11.6-25.0%) 

from the core bottom to c. 12 cm and a progressive decreasing trend to 19.1% at the 

core top.  The C/N ratios ranged from 16.8 to 23.1. Each sediment core was 

characterized by stable C/N ratios with a light decrease in the uppermost strata.  
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The TOC content of the deepest sediment core from Guitane varied between 4.9% and 

11.3%, with a mean value of 8.1% (Figure 7.5). TN ranged from 0.4 to 1.4% with an 

average of 0.8%. TOC and TN did not co-vary in the Guitane core. The TOC content 

gradually decreased from 11.3% at the core bottom to 4.9% at 17 cm depth, increased to 

8.6% at approximately 1856 (10 cm) and maintained levels between 5.0% and 7.7% at 

the top of the core. TN (%) peaked with 1.3% at 40 cm depth and decreased constantly 

to a minimum of 0.3% at approximately 1899 (8 cm).  The C/N ratio ranged from 7.7 to 

16.2 throughout the core. Lowest values were evident (between 11 and 7) from the core 

bottom (52 cm) up to 17 cm. A distinct change is evident from this point with 

increasing C/N ratios to a maximum of 16.2 at c. 1880 (10 cm). These higher ratios are 

maintained to the core top.   

!
Figure 7.5 - TOC (%), TN (%) and C/N ratio (n=10) in Guitane. 

!
7.6 Biological proxies 

7.6.1 Pigments 

A total of 15 fossil pigments were identified in the sediment cores from Feeagh and 14 

pigments in Guitane (Table 6.2). Pigment data for both lakes are shown in Figures 7.6 – 

7.9 and raw data are presented in Appendix Q and Appendix S. In Feeagh the lowest 

pigment concentrations were found in the outflow (range 29.8 – 127.9 nmol g-1) (Figure 
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7.8), while highest concentrations were evident in the deepest core (36.0 – 173.2 nmol 

g-1) (Figure 7.7). This corresponds to the trends expressed in the surficial sediments 

(Chapter 6). In the inflow sediment core the algal pigment abundance ranged between 

48.6 and 132.3 nmol g-1 (Figure 7.6). The profiles from the deepest core peaked twice in 

the 1990s (14 and 10 cm) and peaks were evident in the outflow core (14 cm) and in the 

inflow core (8 cm and 2 cm). In the deepest core a major trough of 36 nmol g-1 at c. 

1980 (20 cm depth) was evident.  In Guitane total pigment concentration ranged from 

35.0 to 323.4 nmol g-1, with minor peaks at 34 and 23 cm depth, followed by a 

progressive increase to maximum concentrations at the core top (Figure 7.9).  

 

The ratio of labile precursor compounds (chl-a) to chemically stable products 

(pheophytin-a) was used to describe the pigment preservation at each site, knowing that 

high ratios indicate good preservation (Figure 7.6 - Figure 7.9). The degree of pigment 

preservation varied among the sediment cores and ranged between 0.06 and 0.77 in 

Feeagh and between 0.13 and 2.45 in Guitane. In Feeagh the ratios were more stable in 

the inflow sediment core (0.15-0.52) compared to the deepest (0.22-0.77) and outflow 

(0.06-0.62) sediment cores. The deepest core had a peak of 0.77 at c. 2003 (6 cm), while 

the outflow core showed two peaks of 0.56 and 0.62 at 20 and 2 cm depth, respectively.  

In contrast, in Guitane the ratios showed a decreasing trend from 0.49 at the core bottom 

to 0.13 at 17.5 cm depth followed by an increase in the surface sediments to 2.45.  An 

indication of good pigment preservation conditions throughout the sediment cores is 

given by the fact that the all pigments remained in relatively stable proportions. This 

was supported by the presence of labile chlorophylls (e.g. chl-a) and carotenoids (e.g. 

diatoxanthin) throughout the sediment cores. These pigments also have higher 

concentrations in older strata. More details are given in the following stratigraphic 

descriptions.  

 

Constrained cluster analysis in CONISS (Grimm, 1987) was performed to facilitate 

interpretation of pigment stratigraphy and identify zones of major change. The 

comparison of CONISS with the broken stick model suggested that the deepest and 

outflow sediment cores can be divided into three distinct zones in Feeagh (Appendix R). 

No significant zones were identified for the Feeagh inflow core (Appendix R).  
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The pigment stratigraphic record of the Feeagh inflow sediment core is illustrated in 

Figure 7.6.  Pigments present in all algae and plantae (chl-a and its derivation products) 

dominated the lower (40-34 cm) and central part (22-20 cm) of the core and reached a 

maximum at 8 cm depth. Pigments belonging to Chlorophyta, Euglenophyta and plantae 

(chl-b and pheophorbide-b) were the most dominant pigments in the rest of the core 

(between 34 and 24 cm depth and from 18 cm up to the core top). 

Chlorophyta/Cyanobacteria (lutein/zeaxanthin) co-varied with the latter pigments and 

peaked between 32 and 28 cm depth and 22 and 14 cm depth. Also siliceous algae 

(fuco- and diatoxanthin) increased in concentrations in this latter part of the core and 

peaked a second time at c. 2 cm depth. Cryptophyta (alloxanthin) showed an increasing 

trend from 22 cm to the core top. Low concentrations of Cyanobacteria (canthaxanthin) 

(0.4-0.9 nmol g-1) were present throughout the core. The UV-absorbing pigment showed 

a gradual increase upcore with the highest concentrations of 6.6 nmol g-1 at 14 cm depth 

and a gradual decrease to the core top to 0.7 nmol g-1.  

 

The deepest sediment core in Feeagh was divided into three significant algal pigment 

zones: Zone 1, (c. 1940-1976), Zone 2 (c. 1976-1998) and Zone 3 (c. 1998-2010) 

(Figure 7.7). Zone 3 was dominated by Chlorophyta, Euglenophyta and plantae (chl-b 

and pheophorbide-b) from c. 1940 (40-36 cm) and by Chlorophyta/Cyanobacteria 

(lutein/zeaxanthin) from c. 1950s to the mid-1970s (34-26 cm). Siliceous algae (in 

particular diatoxanthin) and Cryptophyta (alloxanthin) did not vary.  Zone 2 was 

characterized by fluctuations with lutein/zeaxanthin together with chl-b and 

pheophorbide-b and the UV-absorbing compound successively reaching their highest 

concentrations. Nearly all the pigments experienced a minor peak at c. 1990 and a major 

increase at c. 1998 (16 and 10 cm respectively). In Zone 1 chl-b and pheophorbide-b 

dominated each sample with the exception of the surface sample in which pigments 

present in all algae and plantae reached the highest abundance. Chloro-/Cyanophtya 

pigments did not vary while siliceous algae pigments fuco- and diatoxanthin reached 

highest concentrations at c. 2002 (6 cm) and 2007 (2 cm). The Cryptophyta pigment 

(alloxanthin) peaked in the surface sediments (2011).  

 

The three zones identified in the southernmost (outflow) sediment core were Zone 1 

(38-22 cm), Zone 2 (22-18 cm) and Zone 3 (18-0 cm) (Figure 7.8). Zone 1 was 

characterized by a progressive increase of Chloro- and Euglenophyta and plantae related 
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pigments (chl-b and pheophorbide-b) and Chlorophyta/Cyanophyta pigments 

(lutein/zeaxanthin). These were also the most abundant pigments. This zone showed an 

increase in lutein/zeaxanthin, chl-b and pheophorbide-b at 30 and 24 cm. Siliceous 

algae pigments (fuco- and diatoxanthin) and Cryptophyta pigments (alloxanthin) 

increased at 30 cm and remained constant levels. Zone 2 had the lowest pigment 

concentrations. In the uppermost zone (Zone-1) Chloro- and Euglenophyta and plantae 

pigments (chl-b and pheophorbide-b) reached the highest levels and peaked at 14 cm 

together with Chloro/Cyano- and Euglenophyta and plantae pigments 

(lutein/zeaxanthin, chl-b, pheophorbide-b). Fuco- and diatoxanthin increased slightly at 

2 cm, while alloxanthin increased progressively and reached highest concentrations at 

the core top.  

 

The stratigraphy of the pigment concentrations from Guitane is illustrated in Figure 7.9. 

No significant zones of change were identified (Appendix R). Pigments present in all 

algae and plants (chl-a and its derivation products) contributed to the highest 

concentrations in the lower part of the core (52-36 cm). Increases were evident in chl-b 

and pheophytin-b (12-30 nmol g-1), lutein/zeaxanthin (5-17 nmol g-1) and canthaxanthin 

(2-5.5 nmol g-1). The Cryptophyta pigment alloxanthin peaked at c. 36 cm with 8 nmol 

g-1. All the pigments identified showed a decreasing trend from c. 34 to 28 cm and 

increased again from c. 24 to 20 cm. A peak of N2-fixing colonial Cyanobacteria 

(Aphanizophyll) (40 nmol g-1) was evident at c. 22 cm. The UV-absorbing compound 

had low concentrations throughout the core and increased only between 24 and 22 cm 

depth and at c. 1997 (2 cm depth). Algal and plant pigment concentrations were low 

from c. 1840 to 1985 (12 – 4 cm) but increased progressively over the last decade 

reaching highest concentration in the surface sediments (2-0 cm depth).  
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7.6.2 Water clarity index 

Water clarity or the UVR index (Leavitt et al., 1997; McGowan et al., 2011) was 

calculated based on the ratio of the UV-absorbing pigment and carotenoid pigments. A 

high UVR index indicates high water clarity and therefore low DOC concentrations. In 

Feeagh this ratio showed a decreasing trend in all cores and was more pronounced in the 

inflow core (Figure 7.10). The outflow core was characterized by major fluctuations. In 

Guitane the UVR index was generally lower relative to Feeagh. A peak is evident in the 

central part of the core (28-24 cm depth) and towards the core top. 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!',,")8! !!!!!!!!!!!!!!!!!!!!!!!F*(6"5,!

!
Figure 7.10 – Reconstruction of UVR index from the inflow, deepest and outflow sediment 
cores collected in Feeagh (on the left) (n=20 for each core) and the deepwater sediment core 
from Guitane (on the right) (n=27). Estimated chronologies are available for the Feeagh and 
Guitane deepwater core.   

!
7.6.3 Fossil diatoms 

Diatoms from Feeagh were enumerated as part of the ILLUMINATE project (Dalton et 

al., 2010) from a 60 cm deepwater sediment core, which dated from c. 1890 to 2006.  

Up-core variations can be summarised into three zones of change:  Zone 1 (c. 1880 – 

1967) was characterized by oligotrophic species Achnanthidium minutissimum, 

Cyclotella comensis and C. kuetzingiana:  Zone 2 (c. 1967 – 1987) saw increases in 

nutrient tolerant species Asterionella formosa, while Aulacoseira granulata and A. 

subarctica increased in Zone 3 (post c. 1987).  Sampling as part of the current project 
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found further increases in Asterionella formosa from 4.5% in 2006 to 18.5% in 2010 

and declines in Aulacoseria subarctica from 14.5% to 6.5%.  

 

A total of 83 diatom taxa were enumerated in 10 samples from the deepest core from 

Guitane. Higher counting resolution was conducted for the core top as this was the main 

time period of interest. A full species list and their abundances (%) are given in 

Appendix U.  In order to reduce the effect of counting errors, taxa with a maximum 

occurrence less than 1% and not found in more than two samples were excluded. This 

reduced the diatom dataset to 25 taxa. Fossil diatom assemblages throughout the core 

were mainly dominated by Cyclotella kuetzingiana (23.7%), C. comensis (22.7%), 

Achnanthidium minutissimum (14.0%), Tabellaria flocculosa (4.1%) and C. radiosa 

(3.0%). CONISS cluster analysis (Grimm, 1987) identified nine clusters and the Broken 

Stick model suggested that there are five statistically significant zones: Zone-1 (52 - 29 

cm depth), Zone-2 (29 - 13 cm depth), Zone-3 (pre-c. 1840 to c. 1970), Zone-4 (c. 1970 

– c. 1990) and Zone-5 (c. 1990 to 2010).  Zone-4 and -5 made part of the same cluster 

and were considered for this reason within the following description as one single zone. 

The output of the broken stick model is shown in Appendix V and a summary diatom 

diagram (diatom abundance > 1%) is illustrated in Figure 7.11. Fossil assemblages at 

the core bottom (Zone 1 (52-29 cm depth)) are mainly dominated by Cyclotella 

kuetzingiana (25.8%), C. comensis (18.5%), Achnanthidium minutissimum (12.4%) and 

Brachysira garrensis (4.6%). This zone shows the lowest diatom concentrations (4.4-

6.1 valves 106 g-1) and sees a decline in Brachysira garrensis from 5.8% to 3.8% and 

increases in Cyclotella rossii and Achnantes oblongella from 0.7% to 4.7% and from 

0.2% to 1.3%, respectively. An increase in diatom concentrations (9.8 - 10.1 valves 106 

g-1) and a clear dominance of three species, namely Cyclotella comensis (37.8%) 

Achnanthidium minutissimum (15.4%) and Cyclotella kuetzingiana (11.8%) characterise 

Zone 2 (29-13 cm depth). Cyclotella spp. decrease, while Achnanthidium minutissimum 

increases.  Zone 3 (pre-c. 1840 to c. 1970) is characterised by the highest diatom 

concentrations (average of 9.4 valves 106 g-1 with a range from 5 to 14.1 valves 106 g-1). 

The most dominant species are Cyclotella comensis (25.4%) and C. kuetzingiana 

(19.4%). Achnanthidium minutissimum decreases from 19% to 13.9%, while increases 

in Tabellaria flocculosa, Cyclotella rossii and Fragilaria exigua are evident.  Zone 4 

and Zone 5 (c. 1970 – c. 1990 and c. 1990 - 2010) exhibit lower diatom concentrations 

(6.7 valves 106 g-1 and 2.4 valves 106 g-1 respectively). The assemblages are dominated 
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by Cyclotella kuetzingiana and C. comensis (41.1% and 36.3% respectively). 

Asterionella formosa (10.5%) and Cyclotella menegheniana are now evident. The 

diatom concentrations reach a minimum at the core top with 2.4 valves 106 g-1.  

 

The diatom assemblages for Feeagh and Guitane were grouped into benthic and 

planktonic (including tychoplanktonic taxa such as Aulacoseira spp.) forms and 

expressed as percentages of the total number of valves in each sample (Figure 7.12) 

(Appendix T and U, respectively). In Feeagh the benthic taxa dominated (range 49.7 - 

71.3%), while in Guitane the planktonic taxa prevailed (range 44.2 - 68.2%).  In Feeagh 

the benthic community experienced several minor oscillations from c. 1890 onwards 

reaching highest percentages of 71% at c. 1942. This was followed by a decreasing 

trend and constant levels (c. 50%) in the 1970s. The benthic community increased again 

up to 60% in 2010. The planktonic taxa reached highest percentages in c. 2002 with 

47.1%.  In Guitane the planktonic forms experienced a progressive up-core increase, 

while the benthic taxa decreased. The highest contribution of pelagic taxa (68.2%) was 

observed in c. 1985 (3.5 cm). 



 
1
5
5

!
F

ig
u

re
 7

.1
1
 –

 U
p

-c
o

re
 v

ar
ia

ti
o

n
s 

in
 r

em
ai

n
s 

o
f 

d
o

m
in

an
t 

d
ia

to
m

 t
ax

a 
(a

b
u
n
d
an

ce
 >

 2
%

) 
an

d
 d

ia
to

m
 c

o
n
ce

n
tr

at
io

n
s 

in
 t

h
e 

se
d
im

en
t 

co
re

 s
am

p
le

s 
fr

o
m

 t
h
e 

d
ee

p
es

t 
w

at
er

s 
in

 G
u
it

an
e.

 T
h
e 

re
d
 l

in
es

 e
v
id

en
ce

 t
h
e 

fi
v
e 

st
at

is
ti

ca
ll

y
 s

ig
n
if

ic
an

t 
zo

n
es

. 
C

O
N

IS
S

 z
o
n

es
 a

re
 h

ig
h
li

g
h
te

d
 a

s 
re

d
 l

in
es

. 



 156

!!!!!!!!!!!!!"#!',,")8! !!!!!!!!!!!!!!!!!!!!!!!!!%#!F*(6"5,!

!
Figure 7.12 – Changes in diatom community structure of benthic (blue line) and planktonic (red 
line) forms in a) Feeagh (to the left) and b) Guitane (to the right). 

!
7.7 Discussion 

The results from sediment core reconstructions are considered here in the context 

limnological variability and historical catchment changes to explore temporal 

palaeoecological variations and evaluate potential drivers and stressors of limnological 

change in both lake basins. 

!
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7.7.1 Temporal variations in the sediment record and mechanisms of 
change in water clarity in Feeagh  

The three sediment cores collected from Feeagh revealed spatial and temporal variations 

in the geochemical and biological proxies and this confirmed the importance of utilizing 

multiple cores in palaeolimnological studies (Wolfe, 1996; Waters et al., 2005; Reavie 

& Baratono, 2007). While no chronology was established for the in- and outflow cores 

in Feeagh, it is clear that the sediment accumulation rates were highest in the inflow 

core and lowest in the outflow core (see Chapter 6). This has consequently let to 

variations between the three sediment cores.  Firstly, as already observed in sediment 

trap samples, the organic matter content (TOC and LOI550) was lowest in the inflow 

sediment core. This can be explained by the higher sedimentation of coarser, heavier 

mineral and inorganic particles (Lotter & Bigler, 2000; Vogel et al., 2010). Similarly, 

the C/N ratios were higher in the inflow core and lower in outflow sediments. In each 

sediment core high C/N ratios (> 17) indicated that the organic matter was derived 

mainly from terrestrial sources (Meyers & Eadie, 1993; Meyers & Teranes, 2001). Ertel 

& Hedges (1984) reported C/N values of around 18 from peat and similar values were 

measured by Lamb et al. (2007) and Diefendorf et al. (2008). The total fossil pigment 

concentrations also showed clear spatiotemporal differences. Spatiotemporal variability 

in deposition processes, which can affect sedimentary pigment concentrations across 

lake basins, was already recognized by Leavitt & Carpenter (1989) and has been 

confirmed in the sediments in several lakes (Waters et al., 2005; Brock et al., 2006; 

McGowan et al., 2011). Feeagh in- and outflow sediment cores were characterized by 

lower total pigment concentrations, compared to the deepest core. It is presumed that 

low light intensity and low water temperatures in the deep waters limited photo-

degradation enabled arrival and preservation of pigments at the lake bottom (Carpenter 

et al., 1986; Descy et al., 2000; McGowan, 2007).  

Higher levels of the UVR index, calculated as a measure of water clarity, were evident 

in the in- and outflow cores. More pronounced declines in reconstructed UVR in the 

inflow core indicated reduced water transparency over time and consequently, a 

reduction in penetration of UVR in the water column (Leavitt et al., 1997; McGowan et 

al., 2011). Secchi depth readings collected from the deepest point in Feeagh from 1996 

to 2011 also suggest a slight decreasing trend (Marine Institute, unpublished data). 

While only a few Secchi readings are available between 1996 and 2002, generally 
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deeper and therefore more transparent waters were recorded (with maximum Secchi 

depths of 3 m) compared to the period between 2004 and 2010 (maximum Secchi depth 

of 2.5 m). A further indication of a gradual decline of water clarity is suggested by the 

up-core increase of alloxanthin, a pigment present in Cryptophyta, in each sediment 

core. Cryptophyta dominated in the open water samples (see Chapter 5) and these 

flagellates are known to be tolerant of low light availability and are generally assumed 

to prefer enriched waters (Reynolds et al., 2002). The reconstruction of benthic and 

planktonic diatoms showed a reduction of benthic taxa between the 1940s and 1970s. 

Similarly, Dalton et al., (2010) postulated that a shift from mainly benthic cladocera 

taxa in the 1960s to planktonic taxa in the 1970s could be indicative of reduced water 

clarity over time. This may be caused by peat silt deposition in the littoral areas that 

may have significantly impacted light penetration and therefore, contributing to a 

decrease in available aquatic macrophyte habitats in the littoral zone, which indirectly 

influenced also the benthic cladocera population (Duigan & Birks, 2000; Jeppesen et 

al., 2001; Garrido et al., 2003). More details on biological responses to water clarity 

changes in the sediment records and the combined available historical data sets together 

with an evaluation of potential drivers of limnological change are examined within the 

following paragraphs.  

!
7.7.1.1 Land-use changes!

The deepest and outflow sediment cores showed peaks in total pigment concentrations 

(deepest - c. 2000 and 1990 (10 and 16 cm); outflow - c. 14 and 24 cm). The increases 

corresponded to a rise in pigments present in all algae and plantae (chl-a and -b, 

pheophytin-a and -b, ß-carotene) and in lutein/zeaxanthin, and can be indicative of an 

influx of plant material of terrestrial origin and/or an increase in green algae and/or 

cyanobacteria (Leavitt, 1993; Leavitt & Hodgson, 2001a).  Reconstructions of fossil 

pigments in remote alpine lakes, characterized by low water column chlorophyll 

concentrations similar to Feeagh, showed that high pigment concentrations are not 

necessarily representative of “high productivity” conditions (Lami et al., 2000). Further 

confirmation of terrestrial catchment source for the pigment peaks is given by the low 

open water chl-a concentrations (< 6.9 µg L-1) measured in Feeagh between 1996 and 

2010 (Marine Institute, unpublished data). In the catchment the expansion of 

commercial conifer plantation began in the 1950s and continued until the late 1980s 

(Allott & Brennan, 1993) (Figure 7.13). Peaks in total pigment concentrations coincide 
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and/or highest forest cover density. The vegetation maximum corresponded to the 

period of abundant periphytic diatom taxa relative to planktonic diatoms. Also other 

studies detected a shift in the diatom assemblages and connected them with a nutrient 

pulse, followed by eutrophication, caused by forestry practices (ditching, fertilization, 

clear cutting, soil preparation by ploughing, harrowing or burning) (Turkia et al., 1998; 

Köster et al., 2005). In contrast, Rönkkö et al. (1988) found only mild responses in 

benthic diatoms in small forest streams to forest clear cutting and peat bog ditching.  

 
The decrease in water clarity and shifts in algal assemblages could also be related to the 

severe soil erosion caused by increases in grazing in the uplands of the Burrishoole 

catchment since the 1960s (Figure 7.13), driven by the low unit return from sheep and 

headage payments to farmers (CSO, 1991; Weir, 1996; CSO, 2000, 2006, 2011). Cattle 

numbers in contrast were negligible. Such erosive forces induced the deterioration in the 

level of the typical vegetation cover of peaty soils, followed by the extensive exposure 

of the bedrock and a five-fold increase in the amount of peat lost (Salmon Research 

Agency, 1994). Whelan et al. (1998) revealed that in the 1980s and early 1990s, 21% of 

the Burrishoole catchment was severely overgrazed and characterized by the absence of 

a vegetative cover. Moreover, only 4% could be classified as intact peatland. A 

Commission of the European Union announced that Ireland had failed to take the 

necessary measures to prevent the peat bog of the Owenduff-Nephin Beg Complex 

Special Protection Area from being damaged by overgrazing (Edwards, 2003). Re-

assessment of certain areas in 2004/2005 established that the situation had not improved 

in the intervening years (National Parks and Wildlife Service, 2006). In May 2011 the 

amendment of the Commonage Framework Plans and agri-environmental schemes 

expired (Marine Institute, pers. comm.) again and no particular regulations were 

introduced.  

!
7.7.1.2 Climate change!

Between 1960 and 2009 increases in air temperature (by 1.48°C) and in the frequency 

and intensity of extreme precipitation in winter (of 3.3 events) and annually (7.5 events) 

were found in the Burrishoole catchment (Fealy et al., 2010). Similarly, the annual 

precipitation has increased in some areas of the northern Baltic Sea area during recent 

years (Arvola et al., 2004).  These recent climatic changes have been partly attributed to 

changes in the NAO index (Jennings et al., 2000). Between 1970 and 1990 the 
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prevalence of more positive winter NAO index values was associated with increased air 

temperatures and rainfall amounts together with higher wind speed, increased relative 

humidity and cloud cover in the west of Ireland. This could have influenced surface 

waters and the algal community. Such responses to recent climate change have been 

explored over long-time scales in the UK (George & Taylor, 1995; Davies et al., 1998; 

George et al., 2004; McGowan et al., 2011). Similarly, the wetter conditions in early 

spring were associated with lower abundances of siliceous algae, which were attributed 

to the NAO (Davies et al., 1998).  

 

Fealy et al. (2010) point out that in Burrishoole increase in hot-temperatures and 

decreases in cold-temperatures, together with an increase in the frequency and intensity 

of extreme precipitation in winter and annually was found over the last five decades. 

Byrne (2003) documents an extreme precipitation event in Burrishoole in June 1980 

after two dry months. The palaeolimnological response in fossil pigment concentrations 

shows several troughs and peaks in the deepest and outflow cores during the same 

period. A slight increase in TOC, LOI550 and TN in the deepest water core around this 

time (20 cm depth), could potentially indicating an in-wash of terrestrial suspended 

solids, that reduced the natural levels of UVR and thus, resulting in declines in 

abundance of several algal groups. Moreover, an accumulation in Al, K and Fe was 

measured in the same period the deepest sediment core (Dalton et al., 2010).  The 

diatom assemblage experienced a decrease in various taxa, including Asterionella 

formosa and Fragilaria capucina var. rumpens and an increase in Tabellaria flocculosa, 

Achnantidium minutissimum and Cyclotella kuetzingiana (Dalton et al., 2010).  

!
7.7.2 Palaeolimnological variations in Guitane  

The sediment material in Guitane differs from Feeagh in terms of organic load, pigment 

concentration and different composition and source of primary producers in the lake and 

its catchment as well as diverse diatom assemblages.  The C/N ratio at the base of the 

deepwater core from Guitane indicated that the sedimentary organic matter was 

predominantly autochthonous (C/N ratio < 10) (Meyers, 1994; Meyers & Lallier-

Vergès, 1999) and not allochthonous, as in Feeagh. The sediment core revealed a rise of 

TOC and LOI550 in the 18th century. Consequently, the correspondent increase in the 

C/N ratio from c. 1880 may suggest a shift from autochthonous organic matter to a sub-

equal mixture of algal and terrestrial-derived organic matter content (C/N ratio = 12 - 



 162

13) (Meyers & Lallier-Vergès, 1999; Meyers & Teranes, 2001; Meyers, 2003). This 

change potentially caused the decreased UVR index, indicating low water clarity and is 

coincident with a decline in total pigment concentrations. 

 

Several periphytic diatom species associated with benthic substrates were present in the 

lowermost part of the sediment core, indicating an important component of benthic 

primary productivity. No major change in the diatom assemblages occurred before c. 

1840 (11.5 cm depth) suggesting relatively stable conditions, although higher resolution 

data for this period is required to assess the degree of stability more fully. Until c. 1840 

the diatom assemblages present in the sediment samples were dominated by typical 

acidophilous-circumneutral and oligotrophic taxa: Cyclotella spp., Tabellaria flocculosa 

and Achnanthidium minutissimum.  There was then a slight change to planktonic 

mesotrophic taxa (Asterionella formosa and Aulacoseira subarctica) up to c. 1980 that 

decreased again in the surface samples. The genus Cyclotella has been associated with 

oligohumic with low DOC content (colour < 30 mg Pt L-1) (Miettinen et al., 2005). 

Additionally, deep low productivity Scottish Lochs, were dominated by Cyclotella spp. 

and Achnanthidium minutissimum (Bennion et al., 2004). Marked species shifts to 

planktonic assemblages (e.g. Asterionella formosa, Aulacoseira surbarctica and 

Fragilaria crotonensis) were found to be indicative of nutrient enrichment (Jones et al., 

1997; Bennion et al., 2004).  Over the last four decades Guitane was characterized by a 

gradual increase in total pigment concentrations indicating a rise in algal productivity. A 

rise in pigments from cyanobacteria, Crypto-, Chloro-, Euglenophtya, plantae and 

siliceous algae was observed in the deposited sediment strata. An increase in 

preservation index (chl-a / pheophytin-a) at this time indicated improved pigment 

preservation as is often observed when algal production increases (Leavitt, 1993). 

Monitoring data measured between 1999 and 2007 provided from Kerry County 

Council (unpublished data), show stable average annual TP concentrations of 10-12 µg 

L-1 with occasional peaks of 18 µg L-1, indicating oligo-mesotrophic conditions (OECD, 

1982). The TP values decreased again to 9 µg L-1 over the last four years. Algal blooms 

have been observed over the summer months in the recent years (EPA, 2003; KCC, 

pers. comments). A detailed survey on phytoplankton carried out between 1999 and 

2000 confirmed the presence of blue-green algae (dominated by Oscillatoria agardhii 

and followed by Aphanocapsa sp., Aphanthece sp., Coelospherium kuetzingiana, C. 
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naegeliana, Merismopedia sp. and Oscillatoria limnetica) (Allott et al., 2001). 

Cyanobacteria contributed between 25% and 50% of the phytoplankton biomass in July 

2000 and November 2000.  More details on potential drivers are given within the 

following paragraphs putting emphasis on the more recent decades. 

!
7.7.2.1 Land-use and lake-use changes!

Key drivers of change in the Guitane catchment in the last few decades include 

livestock numbers and climate change. Native and commercial forestry can be elimated 

as influential factors for most of the period of interest.  McCracken (1959) reported that 

much of Kerry was forested in c. 1600, however pollen records confirmed that the area 

was denuded of oak, birch and arbutus to fuel the ironworks during the 17th century 

(Mitchell, 1988, 1990).  No commercial afforestation has taken place over the last 

century within the catchment. Moreover, agricultural activity in the catchment has been 

relatively restricted in the catchment in recent decades.  Sheep numbers increased 

progressively from the 1960s to the 1980s and peaked in the 1990s in the Flesk river 

catchment (Figure 7.14). The cattle number was highest in the 1960s and decreased over 

the following decades (data from CSO, 1960; 1970; 1980; 1990; 2000; 2010). 

Fertilization of catchment fields potentially contributed to a rise in nutrient in-wash, and 

thus in an increase algal pigments and mesotrophic diatoms (Asterionella formosa and 

Aulacoseira subarctica) in the sediment record.  Jennings & Allott (2006) described a 

rise in winter NO3-N in Lough Leane (c. 10 km downstream from Guitane), from below 

150 µg L-1 in the 1970s to levels higher than 400 µg L-1 in the late 1990s, tracking a 

parallel increase in fertilizer sales over the same period. In many other freshwater 

systems was observed similarly an upward trend in NO3-N concentrations in recent 

decades, generally attributable to the use of nitrogen fertilizers in agricultural 

catchments (Vitousek et al., 1997; de Klein & Monaghan, 2011). The amount of pasture 

in the catchment has been reduced since the mid 1990s as a result of Rural 

Environmental Protection Scheme (REPS) (Emerson & Gillmor, 1999) and the 

subsequent introduction of the Commonage Framework Plan in 1998 (Irvine et al., 

2007; EIS, 2009). The recovery to oligotrophic conditions could be have been favored 

by REPS restrictions. The precautionary principle adopted within the catchment area of 

the lake prohibited any form of development (EIS, 2009), enabling improvements in the 

water quality.  

 



 

Figure 7.14 - Sheep and cattle number (both *1000) in Flesk DED between 1960 and 2010.

!
7.7.2.2 Climate change!

A further possible driver of changes in lake productivity over time could be attributed to 

the NAO together with the Gulf Stream. 

precipitation between 1940 and 1993, measured on the south

revealed an increase in mean annual precipitation since 1975 

Moreover, recent studies show that between 1970 and 2000 climate in southwestern 

Ireland was influenced not only by a positive NAO, but also to a lesser extent by the 

Gulf Stream, which contributes to warmer and sunnier weather, with less wind, lower 

cloud cover and less rainfall in late spring and summer (April

2006). This dictates the extent of soil moisture deficit (defined as the rate which 

evapotranspiration exceeds the rate of rainfall 
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precipitation in Northern Europe. Th
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!

!

164

!
Sheep and cattle number (both *1000) in Flesk DED between 1960 and 2010.

A further possible driver of changes in lake productivity over time could be attributed to 

the NAO together with the Gulf Stream. A detailed climatic investigation of the annual 

precipitation between 1940 and 1993, measured on the south-west coast of Irela

revealed an increase in mean annual precipitation since 1975 (Kiely et al.

Moreover, recent studies show that between 1970 and 2000 climate in southwestern 

Ireland was influenced not only by a positive NAO, but also to a lesser extent by the 

Gulf Stream, which contributes to warmer and sunnier weather, with less wind, lower 

ss rainfall in late spring and summer (April-June) (Jennings & Allott, 
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 et al., 1993; Reynolds & Edwards, 1995). Since 2001 

the NAO has remained in a negative/neutral phase (Bates, 2011). During the latter phase 

the Gulf Stream shifted again southwards causing colder winters with higher levels of 

precipitation in Northern Europe. This indicates that over the last ten years a return to 

more oligotrophic conditions in Guitane could also be potentially related to a shift in 
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7.8 Conclusion 

Both Feeagh and Guitane are characterized by contrasting water column and sediment 

trap responses and consequently their sediment core responses are different. Divergent 

levels of DOC in the two lakes contribute to different algal community structures and 

thus fossil assemblages. Carbon outflow from peatlands is highly dependent on the 

catchment morphometry, causing spatiotemporal variations in deposition in the 

sediment. The production / decomposition balance of the acrotelm, and thus the export 

of TOC from peat bogs, is linked to climate and the extent of human activity in the 

catchment. The aquatic ecosystem response to nutrient and carbon enrichment causes 

variations in the autotrophic communities and consequently, the sediment record.   

!

!
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
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!

Chapter 8 – Final conclusions 

!

!

This neo- and palaeolimnological examination of both study sites investigated within 

this thesis clearly shows that allochthonous inputs from peaty catchments have major 

implications for biological and biogeochemical processes in oligotrophic aquatic 

systems. Lake trophic state and their pelagic auto- and heterotrophic assemblages 

through time and space were described in detail. Their response to climate variability 

and catchment condition has been evaluated. The purpose of this final chapter is to 

summarise how this thesis has: i) furthered knowledge of humic and clear water lakes; 

ii) contributed to lake classification; iii) helped refine knowledge of the consequences in 

the treatment of drinking water supplies.  Finally, key contributions of the current 

research are listed. 

!
"#!$%&'(")*'"%&!'%!+&%,-./0.!!

There are 12,206 freshwater lakes in Ireland (Irvine et al., 2007) and approximately one 

fifth (18.5%) of the land-cover is made up by peaty soils with thresholds of at least 25% 

organic matter (Montanarella et al., 2006). Lakes in Ireland are primarily sited in the 

west, northwest and central lowlands, where extensive peat soils are present. This 

suggests that a significant number of lakes potentially have high loads of allochtonous 

matter in their water columns, which significantly influence lake ecology and water 

quality. For example, of the 197 Irish lakes monitored between 2001 and 2002 (Free et 

al., 2006) a total of 93 and 90 were characterized as oligohumic (< 30 PtCo mg L-1) and 

humic lakes (30-90 PtCo mg L-1) respectively, if the classification formulated by Pilke 

et al. (2002) is applied. A further 14 lakes had water colour higher than 90 PtCo mg L-1 

and seven lakes exceeded 120 PtCo mg L-1 and could be considered dystrophic (Lepistö 

et al., 2006). The results from this research suggest that a significant proportion of Irish 

lakes have light restrictions caused by humic compounds, which limit the response of 

primary producers, while the supply of suspended solids stimulates mixotrophic 

flagellates and heterotrophic bacteria. Consequently, lakes in Ireland together with other 

boreal lakes can be considered heterotrophic rather than autotrophic lakes, and thus 

sources of carbon (Cole et al., 1994; Algesten et al., 2003; Sobek et al., 2003).  del 
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Giorgio & Peters (1994) describe an association between lake trophy and net metabolic 

balance and suggested that oligotrophic lakes are dominated by heterotrophic biomass, 

presumably supported by allochthonous inputs of carbon. While no measurements of 

community respiration in the euphotic zone were made within this study, estimations of 

the abundance of bacteria and mixotrophic phytoplankton taxa that have the capacity to 

utilise allochthonous matter gave an indirect indication of the extent of pelagic 

mineralization. Results from humic lakes suggest that inputs of allochthonous organic 

matter are crucial to the bacterial community. Bacteria are primarily stimulated by the 

input of terrestrial suspended solids. This suggests that community respiration can 

periodically exceed phytoplankton photosynthesis (e.g. after the flash-flood and over 

the winter months). In contrast, bacterial abundance seems to be less pronounced in the 

clear water lake. The clear-water lake has a lower allochthonous organic carbon loading 

and is characterized by a more extended photic depth and higher primary production. 

The lower bacterial abundance found in the clear-water lake and potentially lower rates 

of mineralization and atmospheric carbon emissions means that it could be considered a 

carbon source rather than a carbon sink. In boreal landscapes therefore, lakes play a 

fundamental role in carbon cycling and cannot be ignored when assessing the 

importance of ecosystems as sinks or sources of carbon.  

 

IPCC (2007) states that in northern Europe the frequency and magnitude of 

precipitation are very likely to increase due to climate change, and thus the future 

scenario for those lakes will be a greater influx of terrestrial carbon especially in 

forested peaty catchments.  This will fuel and enhance heterotrophic responses. 

Projected future climate data for Burrishoole catchment include an increase in air 

temperature in all seasons (Jennings et al., 2010) and the greatest warming is expected 

to be experienced in the autumn and spring seasons by the 2080s (Fealy et al., 2010). 

Both models predict distinct seasonal precipitation regimes with increased rainfall 

events during the winter and reductions during the summer and early autumn. 

Moreover, the frequency of extreme flow parameters (low and high events) will 

severely affect stream flow within the catchment (Fealy et al., 2010). Extreme climatic 

events are thought to be possible drivers for the exodus of peatland carbon to 

surrounding rivers, lakes and oceans (Freeman et al., 2001a; Milly et al., 2002). 

Immediate lake responses were found following heavy rainfall events within the study 

lakes. The flash-flood event in July 2009 in Mayo and the prolonged precipitation 
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period in November 2009 in Kerry are examples of climate change events (Fealy et al., 

2010). The effects of the flash-flood event were clearly visible in the pelagic 

communities (Chapter 5) and in the trap accumulation of sediment and algal pigments 

(Chapter 6). The high sedimentation rate within the sediment traps in the humic lake 

confirmed that lake sediments are important carbon stores. Arvola et al. (2002) showed 

that Finnish lake sediments are the third largest carbon store after peatland and forest 

soils.  The prolonged precipitation period in November 2009 represented an additional 

example of extreme precipitation event. However, this latter event did not influence the 

primary producers in the clear water lake as the growing season was already over. Low 

sediment deposition rates over the whole collecting period indicated that Guitane is a 

poorer sink for carbon even though it is embedded within a peaty catchment. The influx 

of terrestrial material, following the flood events did not show any particular increase or 

change in the water column traps or surface sediments. However it must be noted that 

the longer sediment trap sampling interval and the collection of sediment cores one year 

after the flood event and the relatively coarse sub-sampling interval (1 cm), may have 

precluded identification of the recent event in the surface sediment strata (Chapter 7).  

 

Land use practices can be inferred from lake sediment responses or palaeolimnological 

reconstructions. Fossil algal pigments and diatoms were used as key indicators because 

of their sensitivity to water quality. The palaeolimnological investigation and from 

Dalton et al. (2010) showed that increased conversion of a blanket peat catchment to 

coniferous forests and overgrazing by sheep together with climatic influences induced 

erosion, a rise in nutrient concentrations and decreased the depth of the euphotic zone. 

Similar scenarios and severe erosion of upland blanket peat were observed in other parts 

of Britain and Ireland (Bradshaw & McGee, 1988; Evans & Warburton, 2007; McHugh, 

2007 ).  In general, forests are known to be crucial determinants of water supply, quality 

and quantity (Bates et al., 2008; Robinson, 2008). Ireland and the United Kingdom are 

known to be the countries with the lowest forest cover in Europe, however huge areas 

were reforested over the last five decades. Ireland aims to increase national woodland 

cover (mainly conifers) from 8% to 17% by 2030 with an afforestation target of 20,000 

ha per annum (Department of Agriculture Food and Forestry, 1996; EPA, 2006).  In the 

future a more targeted interaction between forest management (e.g. timber harvesting 

and reforestation operations) and aquatic environments is essential to develop 

environmentally compatible and sustainable ecosystems to ensure good ecological 
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status.  For example, Scoles et al. (1996) found that in forests where no specific erosion 

control was applied, annual soil losses were significantly higher on harvested and clear 

felled sites than on selectively harvested and control sites. In general, over the last three 

decades in Ireland and Britain the clearcutting silvicultural system has been used 

exclusively (Hendrick, 2004). This involves clearfelling all the stand and subsequent 

reforestation. The sudden change that this practice brings about in the landscape has 

increasingly been criticized (Hart, 1995). In many other parts of Europe continuous 

cover forestry (forest canopy is maintained at one or more levels without clearfelling) 

has been used for centuries (Forestry Commission, 2011). Only recently Coillte (the 

largest Irish commercial company operating in forestry, land based businesses and 

renewable energy) has formulated a policy of sustainable forest management and has 

started to maintain continuous cover forestry in approximately 1,000 ha of conifer 

plantations (Hendrick, 2004). This change from clear-cutting to continuous cover 

forestry will have implications for a wide range of issues including tree growth, 

harvesting, economics, amenity, landscape, recreation and consequently nutrient 

turnover and water quality (inflow of nutrient and allochthonous carbon) of catchment 

rivers and lakes.  It is debatable if an increase of the forest cover will be positive for 

water quality and the requirements of the WFD to maintain or achieve good quality by 

2015 (Solimini, 2006). (Allott et al., 1997; Nisbet, 2001) 

!
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In the literature several approaches to lake classification are utilised. For example, using 

the classification system adopted by the Irish EPA the two study sites are classified as 

Typology class 4 lakes. This class groups together low alkalinity (< 20 mg L-1 CaCO3), 

deep (average depth > 4 m and maximum depth > 12 m) and large (lake area > 50 ha) 

lakes (EPA, 2006).  According to the OECD (1982) and the modified Irish EPA 

classification scheme (Toner et al., 2005) an oligotrophic trophic status is confirmed for 

both Feeagh and Guitane if average and annual maximum chl-a and TP concentrations 

are considered. In contrast, the annual average and minimum Secchi disk transparency 

suggest eutrophic (mean 1.7 m and minimum 0.8 m) conditions for Feeagh and meso-

oligotrophic (mean 5 m and minimum 4.4 m) for Guitane (OECD, 1982). Application of 

Nu !rnberg’s scheme (Nu !rnberg, 1996) suggests both oligo- and eutrophic conditions in 

Feeagh (due to average summer shallow water transparency) and oligotrophic status in 

Guitane. Several authors have recognized that trophic classification based on Secchi 
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depth alone is likely to be unreliable in coloured lakes, where the lack of transparency is 

primarily attributable to the brown colouration (Caffrey et al., 1999; Clenaghan et al., 

2005; George, 2010a), rather than an abundance of phytoplankton (Taylor et al., 2006). 

If the most recently formulated lake typology classification scheme for the WFD 

(Poikane, 2009) is applied, Feeagh and Guitane fall into separate lake types within the 

Northern Geographical Intercalibration Group: LN3a (lowland (< 200 m), shallow (3-

15m), low alkalinity (< 0.2 meq L-1), humic (colour 30-90 mg Pt L-1) and LN3b 

(lowland (< 200 m), mean depth (>15m), low alkalinity (< 0.2 meq L-1), clear (colour < 

30 mg Pt L-1), respectively. This recent WFD typology system recognized and included 

water colour as a proxy for organic peat content (Poikane, 2009). The data shown in this 

thesis highlights that water colour represents a fundamental parameter that can provide 

a better, and in a certain sense a more adequate assessment of lakes. 

!
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Many parts of Northern Europe have had serious difficulties in providing and treating 

an adequate drinking water supply over the last few decades (Rodriguez & Serodes, 

2001a; Löfgren et al., 2003; Sharp et al., 2006). Problems have been evident with 

appearance, taste and smell as well as serious human health issues. Excessive 

abstraction from lakes and reservoirs can also impact negatively on the open water 

ecosystem (e.g. cyanobacterial blooms, decrease in biodiversity such as for example on 

fish populations (Manley et al., 2008)) and on its marginal habitats (e.g. wetland and 

heath land) !"#$%&-Reinoso, 2001)).  Drinking water providers additionally face 

challenges in terms of variation in DOM (or TSS and water colour) that can vary 

seasonally, and can also get in-washed from the surrounding catchment from diffuse or 

point sources.   

 

Water quality issues have mainly centered on the presence of toxic cyanobacteria and 

bacterial contamination.  The enumeration and estimation of algal biomass in both study 

sites did not reveal the presence of cyanobacteria capable of producing toxins (e.g. 

Microcystis, Cylindrospermopsis). In general, cyanobacteria reached higher levels in 

terms of abundance and biomass in the clearwater compared to the humic lake. The 

permanent windy conditions and relatively mild temperatures appear to preclude the 

formation of problematic cyanobacterial blooms (Wiedner et al., 2007; Jöhnk et al., 
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2008). However, the presence of Aphanizomenon in the sediment traps and recent 

sediment samples could represent problems for water quality management including 

deoxygenation of underlying waters, foul odors e.g. H2S, undesirable tastes and fish 

kills (Reynodls & Walsby, 1975; Pearl, 1988). These colonial filaments were not 

encountered in the open water samples probably because they are known to sink down 

to deeper layers, and were consequently out of reach of our sampling method. No 

microbiological assessments were conducted as part of this thesis, however the EPA 

documented inadequate treatment for bacterial and protozoan pathogens in Guitane 

between 2008 and 2009 (EPA, 2011).  

 

Disinfection by-products have become a focus of attention in water treatment since 

THMs were discovered in chlorinated water (Rook, 1974; WHO, 2005). The majority of 

THM problems in potable supplies are caused by either treatment systems that are 

incapable of removing organic matter or the complete absence of adequate treatment to 

remove organic matter in any form (EPA, 2011). Natural variation in DOC and potential 

increases under future climate change scenarios need to be traced over time and 

understood.  In Ireland, the EPA have observed an upward trend in the number of public 

water supplies that failed to meet the maximum acceptable concentration THM values 

of 100 µg L-1 since 2007 (Dunne, 2011). In 2009 a total of 1,851 samples were analyzed 

for THMs in 979 Irish water supply zones. The results showed that 15.6% failed to 

comply with the maximum acceptable concentration for total THMs (European Union, 

1998) and that 16.1% public water supplies were non-compliant. In Guitane as in other 

boreal lakes used for drinking water supply, the seasonal variation of organic matter and 

a future rise in TOC is of concern !"#$%&-Reinoso, 2001; Manley et al., 2008; EIS, 

2009; EPA, 2011). 

!
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1. This research helped establish the present ecological response in 

bacterioplankton and phytoplankton populations and the recent palaeoecology of 

two lake systems. 

2. Neolimnological examination of phytoplankton communities confirmed that 

higher DOC levels and flashfloods have a direct effect on light attenuation, 
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depress primary production and promote bacterial / heterotrophic and potentially 

mixotrophic biomass.  

3. The neolimnological examination was augmented with analysis of sediment 

deposition in the water column. Within and between lake variability reflected 

the differences in catchment, lake size and morphometry and trap samples 

clearly reflected seasonal algal succession and interactions with climate 

parameters.  

4. The results of this study emphasize the interdependence of water column 

parameters, the downward flux of particulate matter and the balance of material 

arriving in the surface sediments.  

5. Palaeolimnological examination of material deposited in the sediment archive 

extended the period of investigation and contrasting sediment core responses 

were evident. The divergent levels of TOC in the two lakes contribute to 

different algal community structures and thus fossil assemblages. These 

responses can be linked to climate and human activity in the catchment.  

6. This three-way examination of lake system components (water column, 

depositing matter and sediment archives) is novel for this region.  

7. This study has detailed ecological responses to natural variation in DOC and 

evaluated the consequences under future climate change scenarios.   

8. The combination of limno- and palaeolimnological studies showed that ongoing 

debates about climate change and anthropogenic impacts on aquatic systems 

need strict management plans for aquatic environments.  

9. An increase in DOC concentrations will potentially put drinking water quality at 

risk as allochtonous carbon contributes to excess bacterial growth, causing 

secondary problems such as disease, taste and smell, and contributing to high 

disinfection by-products (e.g. THM) levels. 
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Appendixes 

 
Appendix A - a) Corine 1990 and b) Corine 2006 for Burrishoole catchment. 
 
a) 

 
b) 
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Appendix B - Corine 1990 and 2006 for Guitane catchment. 
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Appendix C - Chemical parameters measured on a monthly basis in Feeagh and 
Guitane between May 2009 and April 2010 (n=12). 
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 26May09 91 6.9 5 1 6 79 1.7 8.9 200 64 2.1 

 22June09 92 7.1 6 0.5 8 38 1.6 7.1 260 65 2.0 

 22July09 90 7.0 6 2 10 54 3.0 7.5 260 73 1.8 

 17Aug09 84 6.9 6 2 10 65 2.1 11.4 310 87 1.9 

 01Sep09 78.9 6.8 6 1 12 70 1.0 7.4 820 110 1.6 

Feeagh 01Oct09 78.6 6.8 6 1 9 71 0.8 7.6 870 99 1.8 

 06Nov09 77 6.7 5 1 9 83 0.7 6.4 470 100 1.2 

 04Dec09 76 6.7 4 2 7 69 0.3 8.7 370 86 1.8 

 06Jan10 79 6.7 5 3 6 69 0.2 6.7 420 85 1.8 

 02Feb10 81 6.9 5 2 8 76 0.4 7.7 400 78 1.8 

 05Mar10 80 6.8 6 2 5 81 0.3 6.2 480 87 1.9 

 07Apr10 77 6.9 6 0.5 7 83 0.9 6.5 680 83 1.8 

 19May09 50 6.9 4 0.5 2 106 2.0 6.4 210 21 5.1 

 11June09 53 7.0 5 0.5 5 138 2.4 3.8 400 19 4.8 

 1July09 53 7.1 5 1 5 92 4.3 3.0 310 18 5.2 

 24Aug09 49 7.0 6 0.5 5 75 3.4 3.5 250 19 4.4 

Guitane 9Sep09 50.3 6.9 7 1 5 84 3.3 3.5 530 21 4.8 

 12Oct09 49 6.9 5 0.5 4 97 2.3 3.1 310 24 4.7 

 19Nov09 46 6.7 5 3 15 106 2.5 3.1 280 26 - 

 02Dec09 49 6.9 5 1 8 107 1.1 2.7 280 19 5.3 

 25Jan10 48 6.8 4 1 3 120 0.9 2.9 330 16 5.3 

 17Feb10 47 6.8 4 0.5 3 123 0.8 3.1 390 23 5.7 

 13Mar10 48 6.9 5 1 4 180 1.5 3.0 380 22 4.9 

 14Apr10 47 7.0 5 0.5 5 123 1.8 1.5 410 23 4.9 
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Appendix D - Density (cell mL-1) in Feeagh between March 2008 and April 2010 (n=39). 
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Asterionella formosa  33 145 76 2 5 36 21 17 12 16 8 16 133 279 197 415 
Aulacoseira alpigena 69 71 9 4 8 37 38 36 27 27 27 35 76 99 63 71 
Aulacoseira subarctica 23 72 26 2 5 27 34 16 13 19 1 10 13 13 15 0 
Cyclotella radiosa 2 9 11 16 4 4 1 1 7 5 1 0 0 1 1 1 
Cyclotella kuetzingiana 0 0 0 11 2 0 0 0 0 1 3 0 0 0 1 1 
Eunotia cfr incisa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Fragilaria arcus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Fragilaria crotonensis 1 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 
Fragilaria ulna 0 1 0 0 0 0 0 0 0 0 0 0 0 4 2 0 
Frustulia sp. 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 
Rhizosolenia sp. 0 1 1 2 4 1 1 1 1 3 0 1 0 0 0 1 
Tabellaria flocculosa var. 
asterionelloides 0 20 7 6 9 2 5 0 7 0 2 0 6 5 19 42 
Tabellaria flocculosa   0 3 0 1 13 1 0 0 6 0 56 6 3 0 0 18 
Synedra sp. 0 0 0 0 0 0 0 0 0 0 0 0 1 11 13 5 
Navicula spp. 0 1 0 0 0 1 0 0 0 0 3 0 0 1 0 6 
Pennates 1 57 7 2 16 22 14 3 14 1 8 2 0 2 0 8 

Anabaena flos aquae 0 0 0 0 5 2 6 0 0 0 0 0 0 0 0 0 
Aphanocapsa 0 0 0 22 0 438 25 65 0 8 0 0 0 16 0 0 
Oscillatoria agardhii 0 1 0 16 9 194 180 26 11 24 0 1 0 0 4 0 
Snowella cf lacustris 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 
Woronichinia naegeliana 0 0 24 0 0 0 3 0 18 6 0 0 0 0 0 0 

Ankistrodesmus fusiformis 0 0 0 0 1 0 4 0 0 0 0 0 0 0 0 0 

Bitrichia longispina 0 0 1 1 0 1 1 0 0 0 0 2 0 0 0 0 

Botryococcus braunii 0 8 0 11 7 9 9 10 27 2 0 3 27 8 56 131 

Carteria sp. 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 

Chlamydomonas sp. 0 7 7 0 0 14 22 15 10 3 0 15 0 0 0 0 

Closterium abruptum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Closterium acutum var. 
variabile 17 9 10 1 19 9 16 19 20 18 10 21 9 21 3 2 

Closterium gracile 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Closterium kuetzingii 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Closterium navicula 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Crucigeniella rectangularis 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 

Coelastrum microporum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Coenococcus planctonicus 1 3 2 39 2 10 7 4 1 1 0 0 0 8 2 2 

Coenocuccus polycoccus 2 0 0 8 6 23 7 1 2 2 0 0 0 0 0 0 
Cosmarium abbreviatum var. 
planktonicum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Cosmarium depressum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Cosmarium blyttii 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
Cosmarium humile 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Chlorolobion braunii 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 
Dictyosphaerium pulchellum 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
Kirchneriella obesa 0 3 0 5 0 5 6 4 0 0 0 0 0 0 0 0 
Klebsormidium sp. 0 0 0 0 0 3 0 1 1 0 3 2 6 14 3 2 
Monoraphidium contortum 0 2 3 0 5 6 0 1 0 0 6 6 5 60 61 66 
Monoraphidium griffithii 1 2 0 0 2 7 2 7 1 2 0 0 0 0 0 0 
Monoraphidium minutum 14 0 15 0 34 132 19 16 10 3 2 0 5 8 10 8 
Mougeotia sp. 0 0 0 2 0 0 0 0 0 0 4 2 0 1 0 0 
Oocystis parva 0 0 0 0 1 0 1 4 0 0 0 0 0 2 0 1 
Phacus sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Scenedesmus granulatus 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 
Single round cell 59 90 94 0 68 79 23 48 79 0 0 4 0 0 0 0 
Pseudosphaerocystis lacustris 0 4 0 4 3 0 4 0 0 0 0 2 1 2 5 3 
Spondylosium planum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Staurastrum anatinum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Staurastrum arctiscon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Staurastrum cingulum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Staurastrum lunatum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Staurodesmus sellatus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Tetraedron triangulare 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
Tetraedron minimum 0 8 7 0 0 0 0 3 4 1 0 0 0 0 0 0 

Rhodomonas acuta 14 35 768 467 303 51 10 26 12 136 7 9 6 34 548 467 
Rhodomonas minuta 4 31 49 34 75 242 49 58 26 14 19 22 17 71 43 60 
Cryptomonas marssonii 0 0 0 2 0 0 1 1 0 12 0 0 0 0 0 0 
Cryptomonas sp. 0 1 3 11 43 110 1 9 2 2 0 0 0 2 1 4 

Chrysochromulina parva 2 7 71 26 36 26 15 34 10 35 0 3 1 4 26 19 
Dinobryon sociale 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 
Ochromonas tuberculata 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 
Mallomonas akrokomos 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
Mallomonas caudata 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 

Gymnodinium uberrimum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gymnodinium triceratium 0 0 0 0 0 1 2 1 2 0 0 0 0 1 2 2 
Ceratium hirudinella 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Trachelomonas volvocina 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
Ciliates 3 2 2 11 10 10 11 9 4 6 4 1 4 4 5 8 
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Appendix D continues - Density (cell mL-1) in Feeagh between March 2008 and April 2010 (n=39). 
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Asterionella formosa  504 307 4 2 0 4 7 33 15 17 21 16 12 10 7 9 8 
Aulacoseira alpigena 38 23 20 12 56 34 12 19 21 35 50 37 26 15 19 25 24 
Aulacoseira subarctica 0 2 0 7 0 12 1 2 2 5 0 0 0 0 1 0 1 
Cyclotella radiosa 3 1 3 2 2 15 13 11 11 6 4 1 3 0 4 2 2 
Cyclotella kuetzingiana 1 0 0 0 9 2 10 16 9 2 1 2 1 0 0 0 0 
Eunotia cfr incisa 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 
Fragilaria arcus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Fragilaria crotonensis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Fragilaria ulna 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
Frustulia sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Rhizosolenia sp. 1 1 0 6 21 1 0 1 1 1 0 0 0 0 0 0 0 
Tabellaria flocculosa var. 
asterionelloides 8 6 3 2 0 1 0 3 2 1 1 2 2 2 1 1 2 
Tabellaria flocculosa   18 1 1 19 2 16 7 6 1 2 1 6 2 1 0 0 0 
Synedra sp. 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Navicula spp. 6 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 
Pennates 1 0 2 0 5 8 5 5 2 2 2 1 1 1 2 0 3 

Anabaena flos aquae 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 
Aphanocapsa 56 7 13 0 70 0 0 0 6 10 0 0 0 0 0 0 0 
Oscillatoria agardhii 0 0 0 0 0 1 5 0 3 0 5 0 0 0 0 0 0 
Snowella cf lacustris 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Woronichinia naegeliana 48 0 16 7 0 6 901 0 106 165 26 0 0 0 0 2 0 

Ankistrodesmus fusiformis 0 0 0 0 6 2 1 2 0 0 0 0 0 0 0 0 0 
Bitrichia longispina 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 
Botryococcus braunii 2 1 0 15 34 5 17 0 21 8 1 9 7 7 24 3 0 
Carteria sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 2 0 
Chlamydomonas sp. 0 0 0 0 0 1 5 8 58 13 2 2 0 0 0 3 0 
Closterium abruptum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Closterium acutum var. 
variabile 3 0 0 2 26 21 28 40 46 13 9 8 5 11 2 4 9 
Closterium gracile 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Closterium kuetzingii 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Closterium navicula 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Crucigeniella 
rectangularis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Coelastrum microporum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Coenococcus planctonicus 3 0 1 0 25 0 0 0 0 0 2 0 3 0 0 1 1 
Coenocuccus polycoccus 0 0 0 2 0 0 0 0 9 0 0 0 0 0 1 0 0 
Cosmarium abbreviatum 
var. planktonicum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Cosmarium depressum 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 
Cosmarium blyttii 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Cosmarium humile 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Chlorolobion braunii 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Dictyosphaerium 
pulchellum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Kirchneriella obesa 0 0 0 0 0 0 1 0 0 0 0 0 4 0 0 0 0 
Klebsormidium sp. 0 0 9 1 0 0 0 0 1 0 0 1 1 0 0 0 0 
Monoraphidium contortum 60 8 4 3 9 22 38 21 10 5 0 15 2 2 2 0 0 
Monoraphidium griffithii 0 25 0 5 1 11 35 19 40 27 15 5 1 7 3 4 2 
Monoraphidium minutum 10 10 47 30 71 79 66 16 25 9 7 7 10 4 1 0 5 
Mougeotia sp. 0 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Oocystis parva 0 0 0 1 7 0 0 0 1 2 1 1 0 0 0 0 0 
Phacus sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Scenedesmus granulatus 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 
Single round cell 0 71 21 30 97 31 13 36 33 3 1 24 59 30 142 27 115 
Pseudosphaerocystis 
lacustris 2 2 3 1 32 5 0 1 7 0 0 0 0 0 0 0 0 
Spondylosium planum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Staurastrum anatinum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Staurastrum arctiscon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Staurastrum cingulum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Staurastrum lunatum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Staurodesmus sellatus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Tetraedron triangulare 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
Tetraedron minimum 0 0 0 0 0 0 1 0 2 0 0 0 0 2 0 4 1 

Rhodomonas acuta 391 453 475 362 266 166 259 133 112 60 53 33 6 6 10 1 7 
Rhodomonas minuta 24 28 33 20 17 31 79 25 7 4 3 12 21 17 18 19 11 
Cryptomonas marssonii 0 0 0 17 0 0 0 0 0 0 0 3 2 2 0 0 0 
Cryptomonas sp. 4 14 36 159 1 1 5 1 2 1 1 0 0 0 0 0 0 

Chrysochromulina parva 24 30 4 370 9 46 16 0 2 3 4 11 0 0 23 3 10 
Dinobryon sociale 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Ochromonas tuberculata 1 0 0 0 0 0 0 0 0 0 0 4 4 0 0 1 0 
Mallomonas akrokomos 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 
Mallomonas caudata 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 

Gymnodinium uberrimum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gymnodinium triceratium 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 2 
Ceratium hirudinella 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Trachelomonas volvocina 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Ciliates 6 14 11 13 9 10 8 8 7 6 4 5 5 4 4 4 3 
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Appendix D continues - Density (cell mL-1) in Feeagh between March 2008 and April 2010 
(n=39). 

  

0
2

/0
2/

2
0

1
0 

1
1

/0
2/

2
0

1
0 

0
5

/0
3/

2
0

1
0 

1
5

/0
3/

2
0

1
0 

0
7

/0
4/

2
0

1
0 

1
9

/0
4/

2
0

1
0 

Asterionella formosa  3 13 12 29 73 312 
Aulacoseira alpigena 36 44 51 85 103 290 
Aulacoseira subarctica 1 6 8 6 23 25 
Cyclotella radiosa 1 0 0 1 0 0 
Cyclotella kuetzingiana 0 4 0 0 0 0 
Eunotia cfr incisa 0 0 0 0 0 0 
Fragilaria arcus 0 0 0 0 0 0 
Fragilaria crotonensis 0 0 0 0 0 0 
Fragilaria ulna 0 0 0 0 0 0 
Frustulia sp. 0 0 0 0 0 0 
Rhizosolenia sp. 0 0 0 0 0 0 
Tabellaria flocculosa var. asterionelloides 0 0 5 1 1 3 
Tabellaria flocculosa   0 0 2 1 13 0 
Synedra sp. 0 0 0 0 0 0 
Navicula spp. 0 0 0 0 2 3 
Pennates 3 4 1 1 25 23 

Anabaena flos aquae 0 0 0 0 0 0 
Aphanocapsa 0 0 0 0 0 0 
Oscillatoria agardhii 0 0 0 0 0 0 
Snowella cf lacustris 0 0 0 0 0 0 
Woronichinia naegeliana 0 8 2 4 0 8 

Ankistrodesmus fusiformis 0 0 0 0 0 0 
Bitrichia longispina 0 0 0 0 0 0 
Botryococcus braunii 0 0 5 4 0 4 
Carteria sp. 1 2 0 0 0 0 
Chlamydomonas sp. 4 13 1 0 8 1 
Closterium abruptum 0 0 0 0 0 0 
Closterium acutum var. variabile 7 3 9 7 8 24 
Closterium gracile 0 0 0 0 0 0 
Closterium kuetzingii 0 0 0 0 0 0 
Closterium navicula 0 0 0 0 0 0 
Crucigeniella rectangularis 0 0 0 0 0 0 
Coelastrum microporum 0 0 0 0 0 0 
Coenococcus planctonicus 0 0 0 1 1 2 
Coenocuccus polycoccus 1 0 0 0 0 1 
Cosmarium abbreviatum var. planktonicum 0 0 0 0 0 0 
Cosmarium depressum 0 0 0 0 0 0 
Cosmarium blyttii 0 0 0 0 0 0 
Cosmarium humile 0 0 0 0 0 0 
Chlorolobion braunii 0 0 0 0 0 0 
Dictyosphaerium pulchellum 0 0 0 0 0 0 
Kirchneriella obesa 0 0 0 0 0 0 
Klebsormidium sp. 0 0 5 0 0 0 
Monoraphidium contortum 0 0 2 3 2 2 
Monoraphidium griffithii 1 2 3 4 18 9 
Monoraphidium minutum 4 1 4 3 7 0 
Mougeotia sp. 0 0 0 1 0 0 
Oocystis parva 0 0 0 0 0 1 
Phacus sp. 0 0 0 0 0 0 
Scenedesmus granulatus 0 0 0 0 0 0 
Single round cell 181 269 7 18 25 33 
Pseudosphaerocystis lacustris 0 0 0 0 0 0 
Spondylosium planum 0 0 0 0 0 0 
Staurastrum anatinum 0 0 0 0 0 0 
Staurastrum arctiscon 0 0 0 0 0 0 
Staurastrum cingulum 0 0 0 0 0 0 
Staurastrum lunatum 0 0 0 0 0 0 
Staurodesmus sellatus 0 0 0 0 0 0 
Tetraedron triangulare 0 0 0 0 0 0 
Tetraedron minimum 4 2 2 1 0 1 

Rhodomonas acuta 5 4 8 10 44 143 
Rhodomonas minuta 15 27 6 4 12 14 
Cryptomonas marssonii 0 0 0 0 0 0 
Cryptomonas sp. 0 0 0 0 0 0 

Chrysochromulina parva 25 0 0 0 8 12 
Dinobryon sociale 0 0 0 0 0 0 
Ochromonas tuberculata 0 0 0 0 0 0 
Mallomonas akrokomos 0 0 0 0 0 0 
Mallomonas caudata 0 0 0 0 1 0 

Gymnodinium uberrimum 0 0 0 0 0 0 
Gymnodinium triceratium 1 3 0 1 1 1 
Ceratium hirudinella 0 0 0 0 0 0 

Trachelomonas volvocina 0 0 0 0 0 0 
Ciliates 5 4 3 3 4 5 
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Appendix E - Algal and Ciliates biovolume (µm3) and biomass (mm3 m-3) in Feeagh between March ‘08 
and Apr ‘10 (n=39) 
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Asterionella formosa  402.0 13.
2 

58.
3 

30.
6 

0.9 2.1 14.3 8.5 6.7 4.7 6.6 3.3 6.6 53.
5 

112.
2 

79.
1 

166.
8 Aulacoseira alpigena 154.0 10.

7 
10.

9 
1.3 0.6 1.2 5.8 5.8 5.5 4.2 4.1 4.2 5.4 11.

7 
15.2 9.7 10.9 

Aulacoseira subarctica 1342.0 31.
1 

96.
8 

35.
2 

2.0 7.0 36.7 45.
0 

21.
9 

17.
9 

25.
1 

1.1 12.
9 

16.
9 

17.7 19.
5 

0.0 

Cyclotella radiosa 2132.0 4.5 20.
0 

24.
4 

33.3 8.9 8.9 2.2 2.1 15.
5 

11.
1 

2.1 0.0 0.0 2.1 2.1 2.1 

Cyclotella kuetzingiana 475.0 0.0 0.0 0.0 5.4 1.0 0.0 0.0 0.0 0.1 0.5 1.5 0.0 0.2 0.0 0.4 0.3 

Eunotia cfr incisa 948.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 

Fragilaria arcus 850.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.0 

Fragilaria crotonensis 1072.0 1.5 0.0 0.0 0.0 0.0 2.4 1.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Fragilaria ulna 5346.4 0.0 3.4 1.7 0.0 0.9 0.0 0.0 0.2 0.0 0.4 0.0 0.0 2.1 20.3 12.
8 

0.0 

Frustulia sp. 970.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.8 0.1 0.4 0.0 0.0 

Rhizosolenia sp. 964.0 0.1 0.8 0.9 1.8 4.0 0.8 1.1 0.6 1.3 3.0 0.0 1.0 0.2 0.4 0.0 1.3 
Tabellaria flocculosa var. 
asterionelloides 242.0 0.1 4.8 1.6 1.5 2.1 0.4 1.1 0.0 1.8 0.0 0.5 0.0 1.5 1.2 4.6 10.2 

Tabellaria flocculosa   126.0 0.0 0.4 0.0 0.1 1.6 0.2 0.0 0.0 0.8 0.0 7.1 0.7 0.3 0.0 0.0 2.3 

Synedra sp. 327.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.2 3.7 4.2 1.6 

Navicula spp. 970.0 0.0 0.8 0.1 0.0 0.0 0.5 0.0 0.0 0.0 0.0 2.8 0.0 0.4 0.6 0.0 5.8 

Pennates 243.0 0.2 13.
9 

1.8 0.4 3.8 5.2 3.3 0.7 3.4 0.2 1.9 0.5 0.1 0.4 0.1 1.9 

Anabaena flos aquae 120.5 0.0 0.0 0.0 0.0 0.6 0.2 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Aphanocapsa 1.2 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Oscillatoria agardhii 213.0 0.0 0.2 0.0 3.5 2.0 41.3 38.
3 

5.6 2.3 5.1 0.0 0.1 0.0 0.0 0.8 0.0 

Snowella cf lacustris 7.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Woronichinia naegeliana 22.0 0.0 0.0 0.5 0.0 0.0 0.0 0.1 0.0 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

Ankistrodesmus fusiformis 40.3 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Bitrichia longispina 90.4 0.0 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 

Botryococcus braunii 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 

Carteria sp. 561.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 

Chlamydomonas sp. 374.0 0.0 2.7 2.7 0.0 0.0 5.1 8.2 5.4 3.9 1.2 0.0 5.4 0.0 0.0 0.0 0.0 

Closterium abruptum 48143.
8 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.6 4.8 0.0 0.0 0.0 

Closterium acutum var. variabile 186.0 3.1 1.7 1.9 0.2 3.5 1.7 2.9 3.5 3.7 3.3 1.9 3.9 1.7 3.9 0.6 0.4 

Closterium gracile 5801.0 0.0 0.0 0.5 0.9 0.2 0.7 1.2 0.9 0.0 1.4 0.0 0.0 0.0 1.7 2.3 0.0 

Closterium kuetzingii 31586.
8 

0.0 2.5 0.0 1.3 1.3 0.0 0.0 0.0 0.0 0.0 5.1 0.0 0.0 6.3 3.8 0.0 

Closterium navicula 2308.2 0.0 0.2 0.0 0.0 0.0 0.0 0.4 0.4 0.0 0.0 0.0 1.8 0.0 0.2 0.0 0.0 

Crucigeniella rectangularis 36.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 

Coelastrum microporum 180.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Coenococcus planctonicus 30.7 0.0 0.1 0.1 1.2 0.1 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.3 0.1 0.1 

Coenocuccus polycoccus 491.0 0.9 0.2 0.0 3.8 2.7 11.4 3.4 0.4 1.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 
Cosmarium abbreviatum var. 
planktonicum 1663.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 

Cosmarium depressum 1170.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

Cosmarium blyttii 2241.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 2.3 0.0 0.0 0.0 0.0 

Cosmarium humile 782.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Chlorolobion braunii 60.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Dictyosphaerium pulchellum 35.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Kirchneriella obesa 20.2 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Klebsormidium sp. 3933.7 0.0 0.0 0.0 0.0 1.9 13.5 0.0 5.0 3.8 0.0 10.
4 

8.2 23.
6 

54.3 11.
3 

7.9 

Monoraphidium contortum 33.6 0.0 0.1 0.1 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.2 0.2 0.2 2.0 2.1 2.2 

Monoraphidium griffithii 57.0 0.1 0.1 0.0 0.0 0.1 0.4 0.1 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

Monoraphidium minutum 85.0 1.1 0.0 1.2 0.0 2.9 11.2 1.6 1.3 0.9 0.3 0.2 0.0 0.4 0.7 0.9 0.7 

Mougeotia sp. 7620.4 0.0 0.0 0.0 16.5 0.9 0.6 0.0 0.6 0.0 0.0 34.
1 

15.
9 

1.2 6.1 0.0 0.0 

Oocystis parva 93.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.4 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 

Phacus sp. 2748.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Scenedesmus granulatus 27.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Single round cell 14.1 0.8 1.3 1.3 0.0 1.0 1.1 0.3 0.7 1.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

Pseudosphaerocystis lacustris 246.0 0.0 0.9 0.0 0.9 0.7 0.0 1.0 0.0 0.0 0.0 0.1 0.4 0.2 0.4 1.2 0.8 

Spondylosium planum 235.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Staurastrum anatinum 11874.
3 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.6 

Staurastrum arctiscon 25344.
0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Staurastrum cingulum 8817.3 0.0 0.0 0.0 0.7 0.0 0.4 0.4 0.4 1.4 0.0 0.0 0.0 0.0 0.0 0.9 0.0 

Staurastrum lunatum 16005.
2 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Staurodesmus sellatus 12052.
5 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 3.6 

Tetraedron triangulare 288.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 

Tetraedron minimum 941.2 0.0 7.8 6.9 0.0 0.0 0.0 0.0 2.9 3.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 

Rhodomonas acuta 98.0 0.6 1.5 32.
4 

19.7 12.7 2.1 0.4 1.1 0.5 5.7 0.3 0.9 0.6 3.4 53.
7 

45.8 

Rhodomonas minuta 45.0 0.1 1.1 1.7 1.2 2.6 8.5 1.7 2.0 0.9 0.5 0.7 1.0 0.7 3.2 1.9 2.7 

Cryptomonas marssonii 308.0 0.0 0.0 0.0 0.5 0.0 0.0 0.2 0.2 0.0 2.9 0.0 0.0 0.0 0.0 0.0 0.0 

Cryptomonas sp. 3270.0 0.0 3.3 9.5 34.9 136.
4 

348.
8 

3.3 29.
7 

6.6 6.6 0.0 0.0 0.0 6.8 3.4 13.6 

Chrysochromulina parva 67.9 0.1 0.5 4.8 1.8 2.5 1.8 1.0 2.3 0.7 2.4 0.0 0.2 0.1 0.3 1.8 1.3 

Dinobryon sociale 349.0 0.0 0.0 0.0 0.1 0.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Ochromonas tuberculata 1349.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 0.0 0.0 0.0 1.3 

Mallomonas akrokomos 153.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Mallomonas caudata 21696.
6 

0.0 0.0 0.0 6.9 6.9 6.5 2.2 0.0 0.0 0.0 0.0 22.
6 

21.
7 

6.5 2.2 0.0 

Gymnodinium uberrimum 27332.
1 

0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Gymnodinium triceratium 1187.6 0.0 0.0 0.0 0.0 0.2 1.2 2.5 1.2 2.5 0.0 0.5 0.0 0.0 1.2 1.9 2.5 

Ceratium hirudinella 61348.
9 

4.9 0.0 0.0 4.9 12.3 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.9 0.0 

Trachelomonas volvocina 571.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 

Ciliates 5631.4 12.
9 

7.1 9.2 166.
1 

83.0 79.8 28.
4 

21.
0 

9.2 22.
8 

22.
4 

5.9 17.
5 

13.5 14.
7 

37.7 
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Appendix E continues - Algal and Ciliates biovolume (µm3) and biomass (mm3 m-3) in Feeagh between 
March ‘08 and Apr ‘10 (n=39) 
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2
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1
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2
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/0
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2
0

1
0 

Asterionella formosa  202.4 123.6 1.6 0.6 0.2 1.5 2.8 13.3 6.2 6.9 8.3 6.3 4.9 4.1 3.0 3.7 3.2 

Aulacoseira alpigena 5.9 3.6 3.1 1.8 8.6 5.3 1.8 2.9 3.3 5.4 7.6 5.7 3.9 2.4 3.0 3.8 3.7 

Aulacoseira subarctica 0.3 2.8 0.4 8.9 0.0 15.7 1.8 2.7 2.3 6.7 0.0 0.0 0.4 0.5 1.9 0.1 0.7 

Cyclotella radiosa 6.6 2.1 6.6 4.4 4.5 31.1 26.7 24.3 24.4 13.3 8.9 2.2 6.7 0.0 9.0 4.5 4.5 

Cyclotella kuetzingiana 0.4 0.0 0.0 0.0 4.2 0.9 4.9 7.7 4.1 0.9 0.4 1.0 0.5 0.2 0.0 0.0 0.0 

Eunotia cfr incisa 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.4 0.0 0.0 1.1 0.0 1.1 0.0 0.0 

Fragilaria arcus 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Fragilaria crotonensis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Fragilaria ulna 1.8 1.1 0.4 0.9 6.4 1.7 1.1 0.0 1.1 0.0 0.4 0.0 0.0 0.0 0.5 0.0 0.0 

Frustulia sp. 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.2 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

Rhizosolenia sp. 1.3 1.0 0.3 6.0 20.1 0.9 0.2 0.6 0.5 0.6 0.3 0.1 0.1 0.1 0.0 0.0 0.0 
Tabellaria flocculosa var. 
asterionelloides 1.9 1.4 0.8 0.6 0.0 0.2 0.0 0.8 0.5 0.2 0.3 0.5 0.5 0.4 0.2 0.1 0.4 

Tabellaria flocculosa   2.3 0.2 0.2 2.4 0.3 2.0 0.9 0.8 0.1 0.2 0.1 0.8 0.3 0.2 0.0 0.1 0.0 

Synedra sp. 1.7 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Navicula spp. 5.8 0.0 0.8 0.0 0.0 0.0 0.5 0.6 0.4 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 

Pennates 0.2 0.0 0.5 0.0 1.2 2.0 1.3 1.2 0.5 0.6 0.6 0.3 0.3 0.1 0.5 0.1 0.8 

Anabaena flos aquae 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Aphanocapsa 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Oscillatoria agardhii 0.0 0.0 0.0 0.0 0.0 0.3 1.1 0.0 0.7 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 

Snowella cf lacustris 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Woronichinia naegeliana 1.1 0.0 0.4 0.1 0.0 0.1 19.8 0.0 2.3 3.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 

Ankistrodesmus fusiformis 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Bitrichia longispina 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Botryococcus braunii 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Carteria sp. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.9 0.0 1.2 0.0 

Chlamydomonas sp. 0.0 0.0 0.0 0.0 0.0 0.4 1.9 3.1 21.8 4.7 0.8 0.8 0.0 0.0 0.0 1.2 0.0 

Closterium abruptum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Closterium acutum var. variabile 0.6 0.0 0.0 0.4 4.8 3.9 5.2 7.3 8.5 2.3 1.7 1.5 1.0 2.1 0.4 0.8 1.7 

Closterium gracile 0.6 0.0 1.0 1.4 0.6 0.9 1.4 1.7 0.6 0.0 1.2 0.2 0.0 0.0 1.2 0.0 0.0 

Closterium kuetzingii 2.5 0.0 0.0 0.0 3.2 0.0 0.0 0.0 0.0 0.0 3.2 1.3 0.0 0.0 0.0 0.0 0.0 

Closterium navicula 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.1 0.9 0.0 0.0 0.0 0.0 

Crucigeniella rectangularis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Coelastrum microporum 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Coenococcus planctonicus 0.1 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 

Coenocuccus polycoccus 0.0 0.1 0.0 0.9 0.0 0.0 0.0 0.0 4.4 0.0 0.0 0.0 0.2 0.1 0.5 0.0 0.0 
Cosmarium abbreviatum var. 
planktonicum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Cosmarium depressum 0.0 0.0 0.1 0.1 0.2 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 1.2 

Cosmarium blyttii 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Cosmarium humile 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Chlorolobion braunii 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Dictyosphaerium pulchellum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Kirchneriella obesa 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

Klebsormidium sp. 0.0 0.0 34.6 2.7 0.0 0.0 0.6 0.0 3.5 0.0 0.0 2.0 4.4 0.0 0.0 0.0 0.0 

Monoraphidium contortum 2.0 0.3 0.1 0.1 0.3 0.7 1.3 0.7 0.3 0.2 0.0 0.5 0.1 0.1 0.1 0.0 0.0 

Monoraphidium griffithii 0.0 1.4 0.0 0.3 0.1 0.7 2.0 1.1 2.3 1.5 0.8 0.3 0.1 0.4 0.2 0.2 0.1 

Monoraphidium minutum 0.9 0.9 4.0 2.6 6.0 6.7 5.6 1.3 2.1 0.8 0.6 0.6 0.9 0.4 0.1 0.0 0.4 

Mougeotia sp. 3.0 8.4 45.6 0.0 0.0 0.0 0.0 0.0 1.8 0.0 2.4 0.0 0.0 0.0 0.0 0.0 1.5 

Oocystis parva 0.0 0.0 0.0 0.1 0.7 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 

Phacus sp. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 

Scenedesmus granulatus 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Single round cell 0.0 1.0 0.3 0.4 1.4 0.4 0.2 0.5 0.5 0.0 0.0 0.3 0.8 0.4 2.0 0.4 1.6 

Pseudosphaerocystis lacustris 0.4 0.5 0.7 0.3 7.8 1.2 0.0 0.2 1.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Spondylosium planum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Staurastrum anatinum 0.0 0.0 0.0 0.0 2.4 0.9 0.9 2.4 0.9 0.0 0.0 0.5 0.9 0.0 0.0 0.0 0.0 

Staurastrum arctiscon 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Staurastrum cingulum 0.9 0.9 0.0 1.8 0.0 0.0 0.9 0.0 0.9 0.9 0.7 0.0 0.0 0.0 0.0 0.0 0.0 

Staurastrum lunatum 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Staurodesmus sellatus 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Tetraedron triangulare 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Tetraedron minimum 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 2.0 0.0 0.0 0.0 0.0 2.0 0.0 4.0 0.9 

Rhodomonas acuta 38.3 44.4 46.6 35.5 26.1 16.3 25.4 13.0 11.0 5.9 5.2 3.3 0.6 0.6 1.0 0.1 0.7 

Rhodomonas minuta 1.1 1.3 1.5 0.9 0.7 1.4 3.6 1.1 0.3 0.2 0.1 0.6 0.9 0.7 0.8 0.8 0.5 

Cryptomonas marssonii 0.0 0.0 0.0 5.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.6 0.6 0.0 0.0 0.0 

Cryptomonas sp. 13.6 44.1 119.0 520.2 3.3 3.4 17.0 3.4 6.8 3.4 3.4 0.0 0.0 0.0 0.0 0.0 0.0 

Chrysochromulina parva 1.6 2.1 0.3 25.1 0.6 3.1 1.1 0.0 0.1 0.2 0.3 0.8 0.0 0.0 1.6 0.2 0.7 

Dinobryon sociale 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Ochromonas tuberculata 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.6 5.6 0.0 0.0 1.3 0.0 

Mallomonas akrokomos 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Mallomonas caudata 2.2 0.0 18.4 2.6 2.2 0.0 4.3 4.3 6.5 21.7 21.7 1.7 22.6 0.0 0.0 0.0 0.0 

Gymnodinium uberrimum 0.0 2.2 2.7 0.0 0.0 2.7 2.7 0.0 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Gymnodinium triceratium 0.0 0.8 0.0 1.2 0.0 0.2 0.1 0.1 0.1 0.1 0.2 0.1 1.2 1.2 1.2 1.2 2.5 

Ceratium hirudinella 0.0 0.0 4.9 4.9 18.4 6.1 4.9 0.0 4.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Trachelomonas volvocina 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 

Ciliates 30.7 150.6 107.5 57.5 18.6 84.5 85.6 93.1 17.7 17.1 8.2 9.6 10.3 16.8 16.4 13.0 28.4 
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Appendix E continues - Algal and Ciliates biovolume (µm3) and biomass (mm3 m-3) in Feeagh 
between March ‘08 and Apr ‘10 (n=39) 
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Asterionella formosa  1.3 5.3 4.9 11.5 29.5 125.6 

Aulacoseira alpigena 5.5 6.8 7.8 13.1 15.9 44.6 

Aulacoseira subarctica 1.1 8.6 10.9 7.8 31.5 33.1 

Cyclotella radiosa 2.1 0.0 0.0 2.1 0.0 0.0 

Cyclotella kuetzingiana 0.0 2.0 0.0 0.0 0.0 0.0 

Eunotia cfr incisa 0.0 0.0 0.0 0.0 0.0 0.0 

Fragilaria arcus 0.0 0.0 0.0 0.0 0.0 0.0 

Fragilaria crotonensis 0.0 0.0 0.0 0.0 0.0 0.2 

Fragilaria ulna 0.0 1.6 0.0 0.0 2.1 1.7 

Frustulia sp. 0.0 0.0 0.0 0.0 0.0 0.0 

Rhizosolenia sp. 0.0 0.4 0.0 0.1 0.0 0.1 

Tabellaria flocculosa var. asterionelloides 0.0 0.0 1.3 0.2 0.2 0.7 

Tabellaria flocculosa   0.0 0.0 0.2 0.2 1.6 0.0 

Synedra sp. 0.0 0.0 0.0 0.0 0.0 0.0 

Navicula spp. 0.0 0.0 0.0 0.0 2.1 2.5 

Pennates 0.7 1.0 0.1 0.2 6.1 5.6 

Anabaena flos aquae 0.0 0.0 0.0 0.0 0.0 0.0 

Aphanocapsa 0.0 0.0 0.0 0.0 0.0 0.0 

Oscillatoria agardhii 0.0 0.0 0.0 0.0 0.0 0.0 

Snowella cf lacustris 0.0 0.0 0.0 0.0 0.0 0.0 

Woronichinia naegeliana 0.0 0.2 0.0 0.1 0.0 0.2 

Ankistrodesmus fusiformis 0.0 0.0 0.0 0.0 0.0 0.0 

Bitrichia longispina 0.0 0.0 0.0 0.0 0.0 0.0 

Botryococcus braunii 0.0 0.0 0.0 0.0 0.0 0.0 

Carteria sp. 0.3 1.2 0.0 0.1 0.0 0.0 

Chlamydomonas sp. 1.6 4.7 0.4 0.0 3.1 0.4 

Closterium abruptum 0.0 0.0 0.0 0.0 0.0 0.0 

Closterium acutum var. variabile 1.4 0.6 1.7 1.4 1.5 4.4 

Closterium gracile 0.6 0.0 0.0 0.0 0.0 0.0 

Closterium kuetzingii 0.0 0.0 0.0 6.3 0.0 0.0 

Closterium navicula 0.0 0.0 0.0 0.0 0.2 0.0 

Crucigeniella rectangularis 0.0 0.0 0.0 0.0 0.0 0.0 

Coelastrum microporum 0.0 0.0 0.0 0.0 0.0 0.0 

Coenococcus planctonicus 0.0 0.0 0.0 0.0 0.0 0.1 

Coenocuccus polycoccus 0.3 0.0 0.0 0.0 0.0 0.5 

Cosmarium abbreviatum var. planktonicum 0.0 0.0 0.0 0.0 0.0 0.0 

Cosmarium depressum 0.0 0.0 0.0 0.0 0.0 0.0 

Cosmarium blyttii 0.0 0.0 0.0 0.0 0.0 0.0 

Cosmarium humile 0.0 0.0 0.0 0.0 0.0 0.0 

Chlorolobion braunii 0.0 0.0 0.0 0.0 0.0 0.0 

Dictyosphaerium pulchellum 0.0 0.0 0.0 0.0 0.0 0.0 

Kirchneriella obesa 0.0 0.0 0.0 0.0 0.0 0.0 

Klebsormidium sp. 0.0 0.0 18.9 0.0 0.0 0.0 

Monoraphidium contortum 0.0 0.0 0.1 0.1 0.1 0.1 

Monoraphidium griffithii 0.1 0.1 0.2 0.2 1.0 0.5 

Monoraphidium minutum 0.4 0.1 0.4 0.3 0.6 0.0 

Mougeotia sp. 0.0 0.0 0.0 3.8 0.0 0.0 

Oocystis parva 0.0 0.0 0.0 0.0 0.0 0.1 

Phacus sp. 0.0 0.0 0.0 0.0 0.0 0.0 

Scenedesmus granulatus 0.0 0.0 0.0 0.0 0.0 0.0 

Single round cell 2.6 3.8 0.1 0.2 0.4 0.5 

Pseudosphaerocystis lacustris 0.0 0.0 0.0 0.0 0.0 0.0 

Spondylosium planum 0.0 0.0 0.0 0.0 0.0 0.0 

Staurastrum anatinum 0.0 0.0 0.0 0.0 0.0 0.0 

Staurastrum arctiscon 0.0 0.0 0.0 0.0 0.0 0.0 

Staurastrum cingulum 0.0 0.0 0.0 0.9 0.0 0.0 

Staurastrum lunatum 0.0 0.0 0.0 0.0 0.0 0.0 

Staurodesmus sellatus 0.0 0.0 0.0 0.0 0.0 0.0 

Tetraedron triangulare 0.0 0.0 0.0 0.0 0.0 0.0 

Tetraedron minimum 4.0 2.0 2.0 0.9 0.0 1.0 

Rhodomonas acuta 0.5 0.4 0.8 1.0 4.3 14.1 

Rhodomonas minuta 0.7 1.2 0.3 0.2 0.6 0.6 

Cryptomonas marssonii 0.0 0.0 0.0 0.0 0.0 0.0 

Cryptomonas sp. 0.0 0.0 0.0 0.0 0.0 0.0 

Chrysochromulina parva 1.7 0.0 0.0 0.0 0.6 0.8 

Dinobryon sociale 0.0 0.0 0.0 0.0 0.0 0.0 

Ochromonas tuberculata 0.0 0.0 0.0 0.0 0.0 0.0 

Mallomonas akrokomos 0.0 0.0 0.0 0.0 0.0 0.0 

Mallomonas caudata 4.3 0.0 0.0 0.0 22.6 0.0 

Gymnodinium uberrimum 0.0 0.0 0.0 0.0 0.0 0.0 

Gymnodinium triceratium 1.2 3.7 0.4 0.7 1.2 1.2 

Ceratium hirudinella 0.0 0.0 0.0 0.0 0.0 0.0 

Trachelomonas volvocina 0.0 0.0 0.0 0.1 0.0 0.0 

Ciliates 34.3 28.6 44.0 65.9 14.3 18.5 
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Appendix F - Algal and ciliates density (cells mL-1) for Guitane between May 2008 and April 
2010 (n=12).  
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Asterionella formosa  68.8 98.3 16.8 4.0 0.0 0.0 1.3 36.0 8.3 0.4 24.8 2.4 
Aulacoseira subarctica 23.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 9.7 9.8 0.0 
Cyclotella spp. 33.8 31.3 171.6 248.4 305.2 118.8 0.0 2.5 7.8 14.5 61.7 69.0 
Eunotia sp. 1.0 0.0 2.0 3.0 0.0 0.0 0.0 2.0 1.3 4.0 5.0 1.1 
Rhizosolenia sp. 2.0 2.5 1.0 0.0 0.2 0.2 0.0 0.0 0.2 0.1 2.6 0.0 
Tabellaria flocculosa 169.0 40.0 58.4 60.0 123.8 14.0 80.8 422.0 59.6 16.9 56.6 132.8 
Fragilaria ulna 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Navicula sp. 0.0 0.0 0.0 23.0 3.2 0.8 0.0 0.5 0.0 0.0 0.0 0.0 
Pennates 6.0 43.3 16.0 0.0 3.3 1.4 22.3 2.3 5.8 3.2 2.0 8.4 

Anabaena flos aquae 12.0 110.0 114.0 102.0 65.2 25.4 9.5 0.0 0.0 0.4 0.0 4.0 
Aphanocapsa 0.0 58016.7 4523.1 63168.1 0.0 0.0 964.0 1280.0 166.0 400.0 286.0 304.0 
Aphanocapsa elastica 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 
Aphanothece 940.0 16550.0 46479.2 13517.5 6758.7 558.0 0.0 0.0 0.0 0.0 8.0 0.0 
Snowella lacustris 492.5 1183.3 7570.0 4020.0 1156.0 594.2 11.8 350.0 146.0 55.0 82.0 124.0 
Merismopedia tenuissima 18.0 2550.0 6779.5 9831.3 10697.0 1632.5 29.6 410.0 11.6 5.5 14.4 6.8 
Oscillatoria agardhii 371.0 6.1 120.0 271.8 88.3 147.5 160.0 315.0 195.3 500.0 201.3 707.4 
Ankistrodesmus fusiformis 0.0 0.0 0.0 0.0 2.8 0.8 0.8 2.0 0.0 0.0 0.0 0.8 

Bitrichia sp. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 
Botryococcus braunii 53.2 130.0 233.5 114.0 141.2 126.6 35.2 2.3 0.0 25.9 124.6 33.2 
Botryosphaerella sudetica 0.0 0.0 0.0 0.0 60.0 42.0 0.0 0.0 0.0 0.0 0.0 0.0 
Closteriopsis aciculare 0.0 25.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.4 
Closterium kuetzingii 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2 0.1 
Closterium navicula 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 
Chlamydomonas sp. 0.0 0.0 0.0 0.0 0.0 13.0 0.0 2.6 23.4 0.0 0.0 0.0 
Coelastrum microporum 10.8 0.0 0.0 0.0 2.0 2.5 0.0 0.0 3.2 0.0 0.0 0.0 
Cosmarium cf tinctum 1.2 6.7 4.0 3.0 2.8 1.2 1.7 0.8 0.0 0.6 0.6 0.0 
Cosmarium quadrifarium 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 
Cosmarium contractum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 4.8 
Cosmarium depressum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.0 
Crucigeniella crucifera 0.0 6.7 7.0 28.0 0.0 7.0 0.0 2.4 0.0 0.0 0.0 0.0 
Crucigenia tetrapedia 84.0 1118.3 481.0 439.0 1403.7 203.8 85.2 70.2 75.8 118.7 96.0 24.8 
Crucigenia rectangularis 0.0 0.0 0.0 0.0 8.0 0.0 6.5 2.5 0.0 2.4 6.4 1.6 
Dictyosphaerium pulchellum 0.8 5.6 8.0 14.0 29.6 3.6 0.0 7.2 0.0 0.0 0.0 3.7 
Euastrum binale 0.0 0.0 0.0 1.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Euastrum dubium 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 
Euastrum pinnatum 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Eudorina sp. 8.0 0.0 20.0 1.0 13.0 0.4 1.0 0.0 0.4 0.0 0.0 0.0 
Monoraphidium contortum 0.0 10.4 41.6 5.2 5.2 7.8 33.8 5.2 0.0 20.8 5.2 18.2 
Monoraphidium griffithii 0.0 0.0 0.0 0.0 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Monoraphidium minutum 67.5 130.0 106.6 223.6 119.6 70.2 2.5 10.4 18.5 2.5 7.8 80.6 
cf Mougeotia 5.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Oocystis parva/lacustris 6.0 25.0 18.0 8.0 1.6 1.6 2.8 0.2 4.0 1.6 1.6 0.8 
Quadrigula closterioides 27.0 170.0 67.0 20.0 10.6 10.8 2.3 7.3 2.8 2.0 13.0 5.8 
Radiococcus planktonicus 11.0 711.7 140.0 14.0 0.0 4.8 2.5 4.0 0.0 0.0 3.2 32.8 
Scenedesmus dimorphus 0.0 6.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Scenedesmus ecornis 0.0 0.0 28.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Scenedesmus granulatus 4.0 6.7 0.0 25.0 19.2 15.8 8.3 13.5 8.8 3.7 8.4 2.4 
Scenedesmus acutus 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.2 0.0 0.0 3.4 0.0 
Scenedesmus subspicata 0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 2.9 0.0 0.0 
Pseudosphaerocystis lacustris 28.0 216.7 366.0 25.0 10.4 8.0 0.0 1.6 0.0 0.0 0.0 7.2 
Spondylosium planum 8.0 21.7 13.0 24.0 16.4 9.6 5.3 0.0 0.0 0.0 0.0 0.2 
Staurastrum anatinum 0.3 0.0 1.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.3 
Staurastrum arctiscon 0.3 0.1 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Staurastrum cingulum 0.4 0.0 2.0 0.0 0.0 0.4 0.3 0.0 0.0 0.1 0.0 0.0 
Staurodesmus incus 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 
Staurodesmus subulatus 0.0 1.0 2.6 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 
Staurodesmus triangularis 0.0 0.0 1.0 0.0 0.6 0.6 0.0 0.2 0.0 0.0 0.0 0.0 
Tetraedron minimum 7.8 0.0 0.0 0.0 5.2 10.4 0.0 0.0 18.2 0.0 2.6 5.2 
Round single cells (smal) 0.0 126.7 735.7 4.0 5.4 4.8 0.0 3.2 2.8 0.0 0.0 3.8 
Round single cell (bigger size) 0.0 0.0 0.0 645.0 111.8 104.0 0.8 26.0 44.2 49.3 330.1 109.2 

Chroomonas/Rhodomonas 
minuta 70.3 376.9 98.8 179.4 39.0 15.6 0.0 36.4 0.0 2.5 522.5 130.0 
Chroomonas/Rhodomonas 
acuta 177.5 223.6 759.1 104.0 179.4 434.1 361.3 275.5 265.2 532.5 210.6 447.1 

Cryptomonas marsonii 0.0 0.0 59.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Cryptomonas sp. 2.5 26.0 41.6 5.2 15.6 26.0 0.0 5.2 5.2 0.0 2.6 0.0 

Chrysochromulina parva 102.5 280.7 85.8 278.0 7.8 98.8 33.8 41.6 2.5 101.5 0.0 109.2 

Dinobryon bavaricum 0.0 0.0 0.0 0.0 1.2 0.2 0.0 0.6 0.0 0.0 0.0 0.0 

Dinobryon sertularia 7.0 23.0 15.0 4.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 

Mallomonas akrokomos 7.3 10.5 0.0 1.0 1.0 5.8 1.2 0.6 0.4 0.0 0.0 0.2 

Mallomonas caudata 1.0 0.0 0.0 1.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 2.6 

Ceratium hirudinella 0.5 0.1 0.3 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

Gymnodinium triceratium 0.4 2.5 3.0 4.0 13.0 2.6 2.5 1.0 3.2 2.6 10.4 2.6 

Gymnodinium uberrimum 0.3 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.4 0.2 

Trachelomonas 0.0 0.0 0.0 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Phacus striatus 0.0 0.0 0.0 0.3 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 

Ciliates 8.0 9.0 11.5 12.0 6.8 9.0 11.8 8.5 5.8 7.3 4.9 5.0 
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Appendix G - Algal and ciliates biovolume (µm3
) and biomass (mm3 m-3) for Guitane between May ‘08 and 

April ‘10 (n=12). 
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Asterionella formosa  342.6 23.6 33.7 5.8 1.4 0.0 0.0 0.4 12.3 2.8 0.1 8.5 0.8 
Aulacoseira subarctica 616.6 16.5 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 7.3 7.4 0.0 
Cyclotella spp. 541.2 34.9 32.3 87.3 108.5 132.0 43.1 0.0 2.6 8.1 8.8 43.9 26.2 

Eunotia sp. 950.0 1.0 0.0 1.9 2.9 0.0 0.0 0.0 1.9 1.2 3.8 4.8 1.0 
Rhizosolenia sp. 1041.6 2.1 2.6 1.0 0.0 0.2 0.2 0.0 0.0 0.2 0.1 2.7 0.0 
Tabellaria flocculosa 628.9 140.8 35.6 42.6 32.4 42.9 12.5 29.3 222.7 46.6 11.8 48.1 100.6 
Fragilaria ulna 5402.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Navicula sp. 471.4 0.0 0.0 0.0 10.8 1.5 0.4 0.0 0.2 0.0 0.0 0.0 0.0 
Pennates 382.5 2.3 16.6 6.1 0.0 1.2 0.5 8.5 0.9 2.2 1.2 0.8 3.2 

Anabaena flos aquae 174.7 2.1 19.2 19.9 17.8 11.4 4.4 1.7 0.0 0.0 0.1 0.0 0.7 
Aphanocapsa 0.4 0.0 23.2 1.8 25.3 0.0 0.0 0.4 0.5 0.1 0.2 0.1 0.1 
Aphanocapsa elastica 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 
Aphanothece 0.6 0.6 9.9 27.9 8.1 4.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 
Snowella lacustris 7.7 3.8 9.1 58.3 31.0 8.9 4.6 0.1 2.7 1.1 0.4 0.6 1.0 
Merismopedia tenuissima 7.0 0.1 17.9 47.5 68.8 74.9 11.4 0.2 2.9 0.1 0.0 0.1 0.0 

Oscillatoria agardhii 79.5 29.5 0.5 9.5 21.6 7.0 11.7 12.7 25.0 15.5 39.8 16.0 56.2 
Ankistrodesmus fusiformis 19.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Bitrichia sp. 328.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 
Botryococcus braunii 1.8 0.1 0.2 0.4 0.2 0.3 0.2 0.1 0.0 0.0 0.0 0.2 0.1 
Botryosphaerella sudetica 25.9 0.0 0.0 0.0 0.0 1.6 1.1 0.0 0.0 0.0 0.0 0.0 0.0 
Closteriopsis aciculare 34.0 0.0 0.9 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 

Closterium kuetzingii 31586.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.3 0.0 0.0 6.3 3.2 
Closterium navicula 2308.2 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 
Chlamydomonas sp. 377.0 0.0 0.0 0.0 0.0 0.0 4.9 0.0 1.0 8.8 0.0 0.0 0.0 
Coelastrum microporum 258.0 2.8 0.0 0.0 0.0 0.5 0.6 0.0 0.0 0.8 0.0 0.0 0.0 
Cosmarium cf tinctum 3971.0 4.8 26.5 15.9 11.9 11.1 4.8 6.8 3.2 0.0 2.4 2.4 0.0 
Cosmarium quadrifarium 33208.0 0.0 0.0 0.0 0.0 0.0 0.0 6.6 0.0 0.0 0.0 0.0 0.0 

Cosmarium contractum 14978.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 3.0 0.0 71.9 
Cosmarium depressum 184.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Crucigeniella crucifera 34.2 0.0 0.2 0.2 1.0 0.0 0.2 0.0 0.1 0.0 0.0 0.0 0.0 
Crucigenia tetrapedia 16.4 1.4 18.3 7.9 7.2 23.0 3.3 1.4 1.2 1.2 1.9 1.6 0.4 
Crucigenia rectangularis 34.2 0.0 0.0 0.0 0.0 0.3 0.0 0.2 0.1 0.0 0.1 0.2 0.1 
Dictyosphaerium pulchellum 114.6 0.1 0.6 0.9 1.6 3.4 0.4 0.0 0.8 0.0 0.0 0.0 0.4 

Euastrum binale 14.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Euastrum dubium 209.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Euastrum pinnatum 209.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Eudorina sp. 384.0 3.1 0.0 7.7 0.4 5.0 0.2 0.4 0.0 0.2 0.0 0.0 0.0 
Monoraphidium contortum 13.0 0.0 0.1 0.5 0.1 0.1 0.1 0.4 0.1 0.0 0.3 0.1 0.2 
Monoraphidium griffithii 21.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Monoraphidium minutum 109.9 7.4 14.3 11.7 24.6 13.1 7.7 0.3 1.1 2.0 0.3 0.9 8.9 
cf Mougeotia 7620.4 38.1 0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Oocystis parva/lacustris 192.9 1.2 4.8 3.5 1.5 0.3 0.3 0.5 0.0 0.8 0.3 0.3 0.2 
Quadrigula closterioides 30.4 0.8 5.2 2.0 0.6 0.3 0.3 0.1 0.2 0.1 0.1 0.4 0.2 
Radiococcus planktonicus 20.7 0.2 14.7 2.9 0.3 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.7 
Scenedesmus dimorphus 11.7 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Scenedesmus ecornis 58.9 0.0 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Scenedesmus granulatus 38.1 0.2 0.3 0.0 1.0 0.7 0.6 0.3 0.5 0.3 0.1 0.3 0.1 
Scenedesmus acutus 54.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.2 0.0 
Scenedesmus subspicata 59.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.0 
Pseudosphaerocystis lacustris 209.8 5.9 45.5 76.8 5.2 2.2 1.7 0.0 0.3 0.0 0.0 0.0 1.5 
Spondylosium planum 1184.6 9.5 25.7 15.4 28.4 19.4 11.4 6.2 0.0 0.0 0.0 0.0 0.2 

Staurastrum anatinum 9505.7 2.9 0.0 9.5 0.0 0.0 0.0 1.9 0.0 0.0 0.0 0.0 2.9 
Staurastrum arctiscon 25344.0 7.6 2.5 0.0 6.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Staurastrum cingulum 10977.1 4.4 0.0 22.0 0.0 0.0 4.4 2.7 0.0 0.0 1.1 0.0 0.0 
Staurodesmus incus 15500.0 0.0 0.0 0.0 0.0 0.0 0.0 3.1 0.0 0.0 0.0 0.0 0.0 
Staurodesmus subulatus 5531.1 0.0 5.5 14.4 11.1 0.0 0.0 0.0 0.0 0.0 0.0 2.2 0.0 
Staurodesmus triangularis 8686.8 0.0 0.0 8.7 0.0 5.2 5.2 0.0 1.7 0.0 0.0 0.0 0.0 

Tetraedron minimum 86.3 0.7 0.0 0.0 0.0 0.4 0.9 0.0 0.0 1.6 0.0 0.2 0.4 
Round single cells (smal) 61.3 0.0 7.8 45.1 0.2 0.3 0.3 0.0 0.2 0.2 0.0 0.0 0.2 
Round single cell (bigger size) 142.8 0.0 0.0 0.0 92.1 16.0 14.8 0.1 3.7 6.3 7.0 47.1 15.6 

Chroomonas/Rhodomonas 
minuta 

45.0 3.2 17.0 4.4 8.1 1.8 0.7 0.0 1.6 0.0 0.1 23.5 5.8 

Chroomonas/Rhodomonas 
acuta 

98.0 17.4 21.9 74.4 10.2 17.6 42.5 35.4 27.0 26.0 52.2 20.6 43.8 

Cryptomonas marsonii 1410.0 0.0 0.0 84.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Cryptomonas sp. 1939.9 4.8 50.4 80.7 10.1 30.3 50.4 0.0 10.1 10.1 0.0 5.0 0.0 

Chrysochromulina parva 66.4 6.8 18.6 5.7 18.5 0.5 6.6 2.2 2.8 0.2 6.7 0.0 7.2 
Dinobryon bavaricum 218.5 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.1 0.0 0.0 0.0 0.0 
Dinobryon sertularia 146.4 1.0 3.4 2.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Mallomonas akrokomos 153.0 1.1 1.6 0.0 0.2 0.2 0.9 0.2 0.1 0.1 0.0 0.0 0.0 
Mallomonas caudata 1195.0 1.2 0.0 0.0 1.2 0.0 0.3 0.0 0.0 0.0 0.0 0.0 3.1 

Ceratium hirudinella 61348.9 30.7 6.1 15.3 15.3 12.3 0.0 0.0 0.0 0.0 0.0 0.0 6.1 
Gymnodinium triceratium 1187.6 0.5 3.0 3.6 4.8 15.4 3.1 3.0 1.2 3.8 3.1 12.3 3.1 

Gymnodinium uberrimum 
57808.0 14.5 0.0 0.0 0.0 0.0 0.0 11.6 0.0 0.0 0.0 23.1 11.6 

Trachelomonas 571.2 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Phacus striatus 2746.0 0.0 0.0 0.0 0.7 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 

Ciliates 4486.1 26.6 70.7 75.7 63.8 11.5 14.0 25.9 21.7 23.8 34.2 55.7 12.6 
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Appendix H - Picoplankton density (cell 103 mL-1), mean cell biovolume for each sample (µm3) 
and total biomass (mm3 m-3) for Feeagh and Guitane between May 2009 and April 2010 (n=24 
and 12, respectively). 

 

 Feeagh   Guitane 
  Density Biovolume  Biomass   Density Biovolume  Biomass 

  cell 103 mL-1 µm3 mm3 m-3   cell 103 mL-1 µm3 mm3 m-3 

12May2009 28.4 0.8 23.0    Density Biovolume  Biomass 
25May2009 35.5 0.8 28.8    cell 103 mL-1 µm3 mm3  m-3 

11June2009 34.0 0.8 27.6  19May09 67.7 0.9 60.9 

22June2009 138.6 0.8 110.9  11June09 75.0 0.9 67.5 

06July2009 56.2 0.8 45.6  1July09 230.0 0.9 207.0 

22July2009 45.1 0.8 36.6  24Aug09 113.0 0.9 101.7 
04Aug2009 64.7 0.8 51.7  9Sep09 70.4 0.9 63.3 

17Aug2009 114.4 0.8 92.7  12Oct09 134.0 0.9 120.6 

27Aug2009 85.3 0.8 68.2  19Nov09 29.9 0.8 23.3 

07Sep2009 93.5 0.8 76.7  02Dec09 19.2 0.9 16.7 

01Oct2009 74.0 0.8 59.2  25Jan10 27.7 0.8 22.5 

22Oct2009 84.0 0.8 67.2  17Feb10 19.2 0.8 14.6 
06Nov2009 63.3 0.8 48.1  13Mar10 24.5 0.9 22.1 

20Nov2009 92.0 0.7 63.5  14Apr10 103.9 0.9 93.5 

04Dec2009 47.6 0.7 33.3      
22Dec2009 21.3 0.7 13.9      

06Jan2010 25.6 0.6 16.4      

20Jan2010 54.0 0.8 42.1      

02Feb2010 60.4 0.8 46.2      

11Feb2010 43.4 0.7 28.6      

05Mar2010 61.8 0.8 47.0      

15Mar2010 30.6 0.8 22.9      

07Apr2010 36.0 0.8 29.2      

19Apr2010 42.7 0.8 34.6      

 

Appendix I - Bacterioplankton density (cell 103 mL-1), mean cell biovolume for each sample 
(µm3) and total biomass (mm3 m-3) for Feeagh and Guitane between May 2009 and April 2010 
(n=24 and 12, respectively). 

 

 Feeagh   Guitane 
  Density Biovolume  Biomass   Density Biovolume  Biomass 
  cell 103 mL-1 µm3 mm3 m-3   cell 103 mL-1 µm3 mm3 m-3 

12May2009 1323.6 0.12 152.9    Density Biovolume  Biomass 
25May2009 1210.1 0.09 113.2    cell 103 mL-1 µm3 mm3  m-3 

11June2009 1388.7 0.09 118.9  19May09 1440.4 0.08 114.1 

22June2009 2110.3 0.10 218.0  11June09 995.6 0.13 133.4 

06July2009 2113.8 0.10 211.1  1July09 931.9 0.10 92.7 
22July2009 4014.8 0.08 323.9  24Aug09 1110.0 0.10 106.4 

04Aug2009 1711.1 0.08 130.2  9Sep09 1224.7 0.10 117.1 

17Aug2009 2318.5 0.10 222.8  12Oct09 1045.5 0.08 87.9 

27Aug2009 2593.2 0.06 167.4  19Nov09 1423.5 0.05 71.2 

07Sep2009 2315.1 0.08 196.0  02Dec09 1666.0 0.07 116.8 

01Oct2009 1497.9 0.08 117.1  25Jan10 929.8 0.08 76.4 
22Oct2009 1716.3 0.12 213.9  17Feb10 1099.4 0.08 89.5 

06Nov2009 1762.3 0.09 167.4  13Mar10 1330.2 0.11 146.0 

20Nov2009 1777.7 0.10 171.0  14Apr10 928.8 0.10 88.8 

04Dec2009 1295.5 0.09 122.9      

22Dec2009 1784.2 0.09 166.7      

06Jan2010 1535.4 0.07 106.2      

20Jan2010 1435.5 0.07 106.1      

02Feb2010 1258.2 0.08 99.0      

11Feb2010 1279.5 0.07 93.3      

05Mar2010 1354.2 0.07 91.0      

15Mar2010 1579.4 0.07 111.4      

07Apr2010 858.3 0.07 63.4      

19Apr2010 939.5 0.07 66.2      
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Appendix J - Daily (g DW m-2 d-1) and total (g DW m-2) sediment deposition, LOI550 (%); TOC 
(%), TN (%) and C/N ratio at inflow, deepest and outflow traps and in Feeagh between 1st April 
2009 and 8th February 2011 and in Guitane between 9th May 2009 and 19th January 2011 and at 
surface sediments (0 – 1 cm) (* = 27Aug-01Oct for Inflow; n.d. = no data). 
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Deepest 2.6 6.9 4.6 4.9 5.4 0.8 4.3 1.8 3.6  n.d. 0.5 0.6   

Outflow 1.6 5.0 2.9 2.7 4.4 0.6 2.5 1.6 2.3   1.5 0.3 0.7   

               

Total sediment deposition rate (g DW m-2)             

Inflow 123.8 452.3 111.7 278.9 372.3 95.5 337.2 101.0 783.8  380.8 77.2 189.5   
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6 Outflow 40.2 16.3 24.7 32.4 34.6 40.0 26.4 30.5 31.5  45.5 29.1 30.6 30.6   

               

TOC (%)                           
Inflow 9.2 4.9 6.9 9.3 11.3 12.9 10.4 9.4  14.3 15.3 12.4    
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12.0  13.
4 Outflow 18.2 14.3 11.8 11.5 18.1 18.6 15.7 15.2   21.1 13.3 11.9     
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Diatoma moniliformis  

Diatoma tenue 

Eunotia bilunaris 

Eunotia exigua 

Eunotia implicata  

Eunotia incisa 

Eunotia pectinalis 

Eunotia paludosa 

Eunotia rhomboidea 

Fragilaria capucina  

Fragilaria capucina var. 
rumpens 

Fragilaria capucina var. 
vaucheriae 

Fragilaria exigua 

Fragilaria gracilis 

Frustulia rhomboides var. 
saxonica 

Frustulia rhomboides var. 
viridula 

Gomphonema gracile 

Gomphonema minutum 

Gomphonema olivaceoides 

Inflow 

1
A

p
r-

2
6
M

ay
0
9

 
0
.0

 
0
.0

 
0
.0

 
0
.0

 
0
.0

 
1
.5

 
0
.5

 
1
.0

 
0
.0

 
5
.2

 
0
.5

 
1
.2

 
0
.0

 
6
.7

 
0
.7

 
0
.0

 
0
.0

 
2
.9

 
0
.0

 
2
6
M

ay
-2

2
Ju

l0
9

 
0
.0

 
0
.3

 
0
.0

 
0
.0

 
0
.0

 
0
.5

 
0
.3

 
0
.6

 
0
.0

 
0
.0

 
1
.9

 
3
.2

 
0
.6

 
0
.3

 
0
.0

 
0
.0

 
0
.0

 
0
.0

 
0
.9

 

2
7
A

u
g
-0

1
O

ct
0
9

 
0
.0

 
0
.0

 
1
.8

 
0
.6

 
0
.0

 
0
.9

 
1
.2

 
1
.8

 
0
.0

 
4
.8

 
0
.6

 
0
.0

 
4
.8

 
4
.5

 
0
.2

 
1
.2

 
0
.6

 
0
.6

 
0
.6

 

0
1
O

ct
-2

0
N

o
v0

9
 

1
.4

 
0
.0

 
0
.0

 
2
.3

 
2
.3

 
0
.5

 
2
.3

 
2
.8

 
0
.5

 
4
.7

 
0
.0

 
0
.9

 
1
.4

 
5
.4

 
0
.0

 
1
.6

 
1
.2

 
0
.5

 
0
.0

 

2
0
N

o
v-

2
0
Ja

n
1
0

 
0
.0

 
0
.0

 
0
.0

 
0
.5

 
0
.5

 
3
.2

 
1
.3

 
1
.1

 
0
.5

 
3
.2

 
0
.0

 
1
.6

 
4
.1

 
1
.1

 
1
.3

 
0
.0

 
0
.8

 
0
.5

 
0
.5

 

2
0
Ja

n
-1

9
M

ar
1
0

 
0
.0

 
0
.8

 
0
.0

 
1
.0

 
0
.8

 
4
.4

 
0
.8

 
0
.3

 
1
.5

 
1
.0

 
1
.8

 
1
.3

 
5
.8

 
0
.0

 
1
.4

 
0
.0

 
0
.5

 
0
.5

 
2
.5

 
1
9
M

ar
-0

2
Ju

n
1
0

 
0
.0

 
1
.6

 
0
.0

 
0
.4

 
0
.0

 
1
.3

 
0
.0

 
0
.0

 
0
.2

 
1
.7

 
4
.4

 
5
.1

 
0
.8

 
0
.0

 
0
.6

 
0
.0

 
0
.8

 
0
.4

 
2
.7

 

0
2
Ju

n
-2

2
Ju

l1
0

 
0
.2

 
1
.6

 
0
.0

 
0
.0

 
0
.0

 
0
.0

 
0
.2

 
0
.7

 
0
.5

 
0
.0

 
3
.0

 
0
.5

 
0
.5

 
1
.8

 
0
.0

 
0
.0

 
0
.9

 
0
.0

 
0
.5

 

S
u

rf
a
ce

 s
ed

im
en

t 
0
.0

 
2
.5

 
0
.0

 
0
.7

 
0
.0

 
1
.0

 
0
.5

 
1
.5

 
0
.4

 
1
.0

 
1
.7

 
2
.5

 
2
.2

 
1
.0

 
0
.6

 
0
.0

 
0
.0

 
0
.5

 
1
.0

 

Deepest 

1
A

p
r-

2
6
M

ay
0
9

 
0
.0

 
0
.5

 
0
.0

 
1
.7

 
0
.0

 
0
.6

 
0
.0

 
0
.0

 
0
.0

 
3
.1

 
0
.0

 
0
.0

 
2
.4

 
1
.7

 
0
.0

 
0
.0

 
0
.0

 
4
.6

 
0
.5

 

2
6
M

ay
-2

2
Ju

l0
9

 
0
.0

 
0
.0

 
0
.0

 
0
.4

 
0
.0

 
0
.0

 
0
.0

 
0
.0

 
0
.0

 
2
.1

 
0
.0

 
0
.9

 
0
.0

 
2
.6

 
0
.0

 
0
.0

 
0
.0

 
0
.0

 
0
.4

 

2
2
Ju

l-
0
1
O

ct
0
9

 
1
.1

 
0
.0

 
0
.0

 
1
.9

 
0
.5

 
7
.2

 
0
.0

 
0
.5

 
0
.0

 
5
.6

 
0
.0

 
0
.0

 
1
.6

 
7
.0

 
0
.0

 
0
.0

 
0
.5

 
1
.6

 
0
.0

 
0
1
O

ct
-2

0
N

o
v0

9
 

1
.0

 
0
.0

 
0
.0

 
0
.0

 
1
.0

 
1
.1

 
2
.0

 
2
.0

 
0
.0

 
1
.5

 
0
.0

 
1
.5

 
3
.6

 
3
.6

 
0
.0

 
0
.5

 
1
.5

 
1
.0

 
2
.0

 

2
0
N

o
v-

2
0
Ja

n
1
0

 
0
.0

 
0
.0

 
1
.0

 
0
.2

 
0
.5

 
4
.6

 
0
.5

 
0
.7

 
0
.7

 
3
.0

 
1
.4

 
0
.5

 
4
.6

 
0
.6

 
2
.3

 
0
.0

 
0
.5

 
0
.0

 
0
.5

 

2
0
Ja

n
-1

9
M

ar
1
0

 
0
.0

 
1
.4

 
0
.6

 
0
.8

 
0
.4

 
0
.9

 
0
.4

 
0
.0

 
1
.9

 
1
.0

 
1
.2

 
0
.6

 
2
.0

 
1
.2

 
1
.4

 
0
.0

 
1
.0

 
0
.8

 
1
.2

 

1
9
M

ar
-0

2
Ju

n
1
0

 
0
.0

 
0
.0

 
0
.0

 
0
.6

 
0
.0

 
0
.4

 
0
.0

 
0
.0

 
0
.6

 
0
.0

 
2
.9

 
1
.7

 
0
.0

 
0
.6

 
1
.0

 
0
.0

 
0
.0

 
0
.8

 
1
.7

 

0
2
Ju

n
-2

2
Ju

l1
0

 
0
.0

 
0
.0

 
0
.0

 
0
.0

 
0
.5

 
0
.0

 
0
.0

 
0
.0

 
0
.0

 
0
.0

 
2
.4

 
0
.5

 
1
.0

 
1
.0

 
0
.5

 
0
.0

 
0
.0

 
0
.0

 
0
.0

 

S
u

rf
a
ce

 s
ed

im
en

t 
0
.0

 
1
.0

 
0
.8

 
0
.6

 
0
.4

 
2
.8

 
0
.4

 
0
.4

 
1
.2

 
0
.8

 
4
.5

 
2
.6

 
1
.6

 
0
.0

 
1
.0

 
0
.0

 
0
.0

 
0
.4

 
1
.2

 

Outflow 

1
A

p
r-

2
6
M

ay
0
9

 
0
.4

 
0
.4

 
0
.0

 
1
.3

 
0
.0

 
1
.1

 
0
.7

 
0
.7

 
0
.0

 
6
.1

 
0
.9

 
0
.4

 
0
.9

 
2
.9

 
0
.4

 
0
.4

 
0
.0

 
0
.9

 
0
.4

 
2
6
M

ay
-2

2
Ju

l0
9

 
0
.0

 
0
.0

 
0
.0

 
0
.4

 
0
.0

 
0
.0

 
0
.0

 
1
.6

 
0
.0

 
2
.7

 
0
.0

 
0
.4

 
0
.4

 
0
.4

 
0
.7

 
0
.0

 
0
.0

 
0
.0

 
0
.0

 

2
2
Ju

l-
0
1
O

ct
0
9

 
0
.7

 
0
.7

 
0
.0

 
0
.7

 
0
.0

 
2
.6

 
1
.5

 
1
.5

 
1
.5

 
5
.2

 
0
.0

 
0
.0

 
2
.2

 
7
.8

 
0
.5

 
0
.4

 
2
.2

 
0
.0

 
3
.7

 

0
1
O

ct
-2

0
N

o
v0

9
 

0
.0

 
0
.0

 
0
.0

 
0
.5

 
0
.0

 
2
.1

 
1
.5

 
1
.5

 
0
.0

 
3
.5

 
0
.0

 
0
.0

 
1
.8

 
3
.0

 
1
.4

 
0
.0

 
0
.0

 
1
.0

 
0
.0

 

2
0
N

o
v-

2
0
Ja

n
1
0

 
0
.0

 
0
.0

 
0
.0

 
0
.4

 
0
.0

 
1
.3

 
0
.8

 
1
.3

 
2
.0

 
0
.5

 
1
.6

 
1
.3

 
3
.8

 
0
.0

 
0
.7

 
0
.0

 
0
.3

 
0
.5

 
1
.0

 

2
0
Ja

n
-1

9
M

ar
1
0

 
1
.2

 
0
.0

 
0
.3

 
0
.3

 
0
.5

 
1
.3

 
0
.0

 
0
.0

 
3
.2

 
0
.0

 
1
.5

 
0
.5

 
5
.0

 
0
.3

 
2
.4

 
0
.0

 
0
.8

 
0
.5

 
2
.4

 
1
9
M

ar
-0

2
Ju

n
1
0

 
0
.0

 
0
.0

 
0
.0

 
1
.2

 
0
.3

 
0
.0

 
0
.2

 
0
.2

 
0
.5

 
0
.0

 
1
.9

 
2
.4

 
3
.5

 
0
.0

 
0
.1

 
0
.0

 
0
.0

 
1
.4

 
0
.3

 

0
2
Ju

n
-2

2
Ju

l1
0

 
0
.0

 
0
.0

 
0
.0

 
0
.5

 
0
.0

 
0
.0

 
0
.0

 
0
.0

 
0
.0

 
0
.0

 
1
.5

 
0
.0

 
0
.0

 
1
.0

 
0
.0

 
0
.0

 
1
.0

 
0
.0

 
0
.5

 

S
u

rf
a
ce

 s
ed

im
en

t 
0
.0

 
1
.2

 
0
.5

 
0
.2

 
0
.2

 
0
.0

 
0
.0

 
0
.9

 
0
.5

 
0
.7

 
0
.9

 
4
.0

 
1
.9

 
0
.7

 
2
.3

 
0
.7

 
0
.0

 
0
.9

 
1
.9

 

 



 
2

2
9
 

A
p

p
en

d
ix

 L
 c

o
n

ti
n

u
es

 -
 R

el
at

iv
e 

ab
u

n
d

an
ce

 (
%

) 
o
f 

p
la

n
k
to

n
ic

 a
n
d
 b

en
th

ic
 d

ia
to

m
 t

ax
a,

 r
el

at
iv

e 
ab

u
n
d
an

ce
 o

f 
fo

ss
il

 d
ia

to
m

s 
(

 1
%

 
ab

u
n
d
an

ce
),

 d
ia

to
m

 a
cc

u
m

u
la

ti
o
n
 (

v
al

v
es

 1
0

3
 d

-1
 c

m
-2

) 
in

 t
ra

p
 s

am
p
le

s 
(g

re
y
 c

o
lu

m
n
s)

 a
n
d
 d

ia
to

m
 c

o
n
ce

n
tr

at
io

n
 (

v
al

v
es

 1
0

3
 g

-1
) 

o
f 

su
rf

ac
e 

se
d

im
en

t 
in

 s
ed

im
en

t 
tr

ap
s 

se
d

im
en

t 
tr

ap
 s

am
p
le

s 
(1

st
 A

p
ri

l 
2

0
0

9
 –

 2
2

nd
 J

u
ly

 2
0

1
0

; 
n

=
8
) 

an
d

 s
u
rf

ac
e 

se
d

im
en

t 
(0

-1
 c

m
; 

n
=

3
) 

fr
o
m

 t
h
e 

in
fl

o
w

, 
d
ee

p
es

t 
an

d
 o

u
tf

lo
w

 s
ta

ti
o
n
s 

in
 F

ee
ag

h
. 

 

 
 

Gomphonema parvulum 

Gomphonema pumilum 

Gompho sp.  

Navicula porifera var. 
opportuna 

Navicula pseudocutiformis 

Pinnularia appendiculata 

Reimera sinuata 

Synedra ulna  

Tabellaria flocculosa 

unkown 

Diatom accumulation/ 
concentration 

Inflow 

1
A

p
r-

2
6
M

ay
0
9

 
0
.5

 
0
.0

 
0
.0

 
0
.0

 
0
.0

 
0
.5

 
0
.5

 
1
.9

 
5
.5

 
0
.0

 
2
5
.8

 

2
6
M

ay
-2

2
Ju

l0
9

 
0
.3

 
0
.0

 
0
.3

 
0
.0

 
0
.3

 
0
.3

 
0
.0

 
0
.4

 
1
3
.1

 
0
.6

 
0
.5

 

2
7
A

u
g
-0

1
O

ct
0
9

 
1
.8

 
0
.0

 
0
.6

 
0
.9

 
1
.5

 
1
.2

 
1
.2

 
0
.0

 
8
.2

 
0
.6

 
1
0
.4

 

0
1
O

ct
-2

0
N

o
v0

9
 

3
.3

 
0
.0

 
2
.3

 
0
.0

 
1
.2

 
1
.4

 
0
.0

 
1
.2

 
8
.7

 
0
.0

 
6
.7

 
2
0
N

o
v-

2
0
Ja

n
1
0

 
3
.5

 
0
.0

 
0
.8

 
1
.1

 
0
.0

 
1
.1

 
0
.0

 
0
.5

 
6
.5

 
1
.9

 
6
.4

 

2
0
Ja

n
-1

9
M

ar
1
0

 
1
.8

 
0
.0

 
1
.3

 
0
.0

 
0
.0

 
0
.8

 
0
.3

 
0
.1

 
3
.0

 
0
.5

 
0
.7

 

1
9
M

ar
-0

2
Ju

n
1
0

 
1
.7

 
1
.3

 
1
.7

 
0
.0

 
0
.4

 
0
.4

 
0
.0

 
0
.4

 
4
.1

 
0
.6

 
0
.6

 

0
2
Ju

n
-2

2
Ju

l1
0

 
0
.5

 
0
.0

 
0
.5

 
0
.2

 
0
.0

 
0
.0

 
0
.0

 
1
.3

 
3
.4

 
0
.5

 
4
.5

 

S
u

rf
a
ce

 s
ed

im
en

t 
2
.0

 
0
.0

 
0
.0

 
0
.0

 
0
.0

 
0
.5

 
0
.5

 
0
.1

 
4
.2

 
0
.5

 
8
.4

 

Deepest 

1
A

p
r-

2
6
M

ay
0
9

 
0
.5

 
0
.0

 
3
.9

 
0
.0

 
0
.7

 
0
.7

 
0
.0

 
1
.9

 
3
.4

 
0
.0

 
2
1
.0

 
2
6
M

ay
-2

2
Ju

l0
9

 
0
.0

 
0
.0

 
0
.0

 
0
.0

 
0
.2

 
0
.4

 
0
.0

 
0
.0

 
4
.3

 
0
.0

 
1
.1

 

2
2
Ju

l-
0
1
O

ct
0
9

 
0
.5

 
0
.0

 
3
.2

 
1
.1

 
1
.3

 
0
.0

 
0
.0

 
0
.3

 
8
.0

 
0
.0

 
7
.2

 

0
1
O

ct
-2

0
N

o
v0

9
 

3
.0

 
0
.0

 
2
.5

 
0
.5

 
0
.0

 
0
.3

 
0
.5

 
0
.5

 
7
.6

 
0
.0

 
1
2
.8

 

2
0
N

o
v-

2
0
Ja

n
1
0

 
3
.7

 
0
.0

 
2
.3

 
0
.5

 
2
.3

 
1
.3

 
1
.2

 
0
.7

 
3
.5

 
1
.8

 
0
.6

 

2
0
Ja

n
-1

9
M

ar
1
0

 
1
.8

 
0
.4

 
2
.5

 
0
.0

 
0
.0

 
2
.4

 
0
.4

 
0
.3

 
2
.5

 
0
.0

 
0
.9

 

1
9
M

ar
-0

2
Ju

n
1
0

 
1
.7

 
0
.4

 
0
.0

 
0
.4

 
0
.6

 
0
.4

 
0
.0

 
0
.8

 
2
.7

 
0
.2

 
2
.5

 
0
2
Ju

n
-2

2
Ju

l1
0

 
0
.0

 
0
.0

 
0
.0

 
0
.0

 
0
.0

 
0
.0

 
0
.0

 
0
.2

 
1
.2

 
0
.2

 
1
1
.0

 

S
u

rf
a
ce

 s
ed

im
en

t 
1
.2

 
1
.2

 
0
.4

 
0
.4

 
0
.0

 
2
.2

 
0
.4

 
0
.6

 
5
.5

 
0
.4

 
4
.9

 

Outflow 

1
A

p
r-

2
6
M

ay
0
9

 
0
.4

 
0
.0

 
1
.3

 
0
.4

 
1
.8

 
0
.0

 
0
.0

 
0
.7

 
2
.6

 
1
.3

 
2
4
.2

 

2
6
M

ay
-2

2
Ju

l0
9

 
0
.4

 
0
.0

 
0
.0

 
0
.0

 
0
.0

 
0
.9

 
0
.0

 
0
.4

 
5
.4

 
0
.0

 
0
.6

 

2
2
Ju

l-
0
1
O

ct
0
9

 
0
.0

 
0
.0

 
1
.5

 
0
.0

 
0
.7

 
0
.0

 
0
.0

 
0
.0

 
1
1
.6

 
0
.0

 
1
0
.4

 

0
1
O

ct
-2

0
N

o
v0

9
 

1
.3

 
0
.0

 
3
.5

 
0
.3

 
0
.3

 
0
.0

 
0
.8

 
0
.8

 
5
.5

 
0
.0

 
6
.8

 
2
0
N

o
v-

2
0
Ja

n
1
0

 
2
.8

 
0
.0

 
1
.0

 
0
.0

 
2
.5

 
0
.9

 
0
.5

 
0
.6

 
3
.6

 
2
.5

 
5
.4

 

2
0
Ja

n
-1

9
M

ar
1
0

 
2
.4

 
0
.5

 
0
.5

 
0
.0

 
0
.0

 
0
.0

 
0
.0

 
0
.7

 
2
.4

 
1
.6

 
0
.6

 

1
9
M

ar
-0

2
Ju

n
1
0

 
1
.9

 
0
.7

 
0
.3

 
0
.0

 
0
.2

 
0
.0

 
0
.3

 
0
.4

 
1
.9

 
0
.2

 
1
.6

 

0
2
Ju

n
-2

2
Ju

l1
0

 
1
.5

 
0
.0

 
0
.5

 
0
.0

 
0
.7

 
0
.0

 
0
.0

 
0
.1

 
0
.7

 
0
.5

 
8
.3

 

S
u

rf
a
ce

 s
ed

im
en

t 
0
.5

 
2
.3

 
0
.5

 
0
.5

 
0
.0

 
0
.0

 
2
.3

 
0
.0

 
1
.1

 
4
.0

 
3
.2

 



 
2

3
0
 

A
p

p
en

d
ix

 M
 -

 R
el

at
iv

e 
ab

u
n

d
an

ce
 (

%
) 

o
f 

p
la

n
k
to

n
ic

 a
n
d
 b

en
th

ic
 d

ia
to

m
 t

ax
a 

an
d
 r

el
at

iv
e 

ab
u
n
d
an

ce
 o

f 
fo

ss
il

 d
ia

to
m

s 
(

 
1
%

 a
b
u
n
d
an

ce
),

 d
ia

to
m

 a
cc

u
m

u
la

ti
o
n
 (

v
al

v
es

 1
0

3
 d

-1
 c

m
-2

) 
in

 t
ra

p
 s

am
p
le

s 
(g

re
y
 c

o
lu

m
n
s)

 a
n
d
 d

ia
to

m
 c

o
n
ce

n
tr

at
io

n
 

(v
al

v
es

 1
0

3
 g

-1
) 

in
 s

ed
im

en
t 

tr
ap

s 
se

d
im

en
t 

tr
ap

 s
am

p
le

s 
at

 i
n
fl

o
w

, 
d
ee

p
es

t 
an

d
 o

u
tf

lo
w

 s
ta

ti
o
n
s 

(1
9

th
 M

ay
 2

0
0
9
 –

 1
4

th
 

Ju
ly

 2
0

1
0

; 
n

=
2
) 

an
d

 s
u

rf
ac

e 
se

d
im

en
t 

(0
-1

 c
m

; 
n

=
1

) 
fr

o
m

 t
h
e 

d
ee

p
es

t 
p
o
in

t 
in

 G
u
it

an
e 

(n
.d

. 
=

 n
o
 d

at
a 

av
ai

la
b
le

).
  

 

 
 

Planktonic 

Benthic 

Achnanthes subatomoides 

Achnanthidium minutissimum 

Asterionella formosa  

Aulacoseira subarctica 

Brachysira garrensis  

Brachysira vitrea 

Cyclotella comensis 

Cyclotella kuetzingiana 

Cyclotella menegheniana 

Cyclotella radiosa  

Cymbella silesiaca 

Eunotia implicata  

Eunotia rhomboidea 

Fragilaria capucina var. 
rumpens 

Nitzschia palea 

Tabellaria flocculosa 

Diatom accumulation/ 
concentration 

 
1
9
M

ay
0

9
-2

5
Ja

n1
0

 
7
5
.7

 
1
4
.4

 
0
.0

 
7
.9

 
0
.5

 
1
.2

 
2
.2

 
1
.0

 
1
2
.0

 
4
4
.7

 
0
.0

 
6
.3

 
1
.4

 
0
.7

 
0
.2

 
0
.5

 
0
.5

 
1
1
.1

 
1
.2

 
In

fl
o
w

 
2
5
Ja

n1
0

-1
4
Ju

ly
1
0

 
6
0
.7

 
2
6
.5

 
0
.6

 
1
3
.0

 
1
.5

 
5
.0

 
2
.5

 
2
.5

 
8
.8

 
2
7
.3

 
1
.1

 
2
.2

 
2
.5

 
1
.3

 
2
.3

 
1
.5

 
0
.2

 
1
4
.7

 
1
.3

 

 
1
9
M

ay
0

9
-2

5
Ja

n1
0

 
n.

d
. 

n.
d
. 

n.
d
. 

n.
d
. 

n.
d
. 

n.
d
. 

n.
d
. 

n.
d
. 

n.
d
. 

n.
d
. 

n.
d
. 

n.
d
. 

n.
d
. 

n.
d
. 

n.
d
. 

n.
d
. 

n.
d
. 

n
.d

. 
n.

d
 

D
ee

p
es

t 
2
5
Ja

n1
0

-1
4
Ju

ly
1
0

 
7
2
.7

 
2
0
.0

 
0
.7

 
1
0
.6

 
0
.2

 
7
.3

 
1
.8

 
1
.6

 
1
2
.2

 
3
2
.6

 
2
.5

 
0
.7

 
0
.5

 
0
.9

 
1
.1

 
1
.1

 
1
.6

 
1
7
.2

 
1
.7

 

 
S

u
rf

a
ce

 s
ed

im
en

t 
7
1
.1

 
2
8
.2

 
0
.0

 
1
3
.3

 
3
.9

 
1
.8

 
2
.4

 
0
.0

 
7
.0

 
3
6
.3

 
3
.3

 
6
.1

 
2
.6

 
0
.0

 
0
.0

 
2
.0

 
0
.4

 
1
1
.2

 
2
.4

 

 
1
9
M

ay
0

9
-2

5
Ja

n1
0

 
6
8
.0

 
2
3
.3

 
1
.1

 
1
1
.6

 
3
.0

 
1
.9

 
1
.7

 
2
.4

 
1
1
.4

 
3
5
.7

 
0
.0

 
6
.2

 
3
.0

 
1
.1

 
1
.1

 
0
.9

 
0
.4

 
9
.7

 
1
.7

 
O

u
tf

lo
w

 
2
5
Ja

n1
0

-1
4
Ju

ly
1
0

 
5
8
.4

 
3
0
.9

 
1
.2

 
1
7
.6

 
1
.7

 
1
.4

 
3
.6

 
1
.7

 
1
0
.9

 
2
9
.2

 
1
.0

 
0
.5

 
3
.0

 
0
.7

 
0
.7

 
1
.2

 
1
.3

 
1
3
.8

 
1
.2

 



 231

Appendix N a) Feeagh LOI550 versus depth (grey line corresponds to Illuminate master core 
with 210Pb chronology, while black line corresponds to PhD master core) b) Correlation scatter 
plot between Illuminate Master core and PhD master core (n=10, R2=0.97767). 

a) b) 

 

 

 
Appendix O - 210Pb, Cs137 and Am241 concentrations in core Guitane in the sediment core 
collected from Guitane. 

Depth 
Dry 

Mass Total 
Pb210 

Supported Unsupported 
Cum supported 

Pb210 
Cs137 Am241 

cm g cm-2 Bq kg-1   ± 
Bq k 

g-1   ± 
 Bq 
kg-1 ± Bq m-2 

           
± 

Bq kg-

1 ± 
Bq 

kg-1 ± 

0.5 0.02 1094.85 64.95 106.04 13.77 988.81 66.39 184.10 12.70 113.23 9.76 0.00 0.00 
1.5 0.09 881.47 35.00 58.18 6.90 823.29 35.67 821.10 46.60 197.13 6.70 0.00 0.00 

2.5 0.21 947.50 24.79 62.63 3.82 884.87 25.08 1815.70 76.30 262.00 5.24 0.00 0.00 

3.5 0.34 825.91 33.38 82.52 6.27 743.39 33.96 2879.50 99.50 329.56 7.94 0.00 0.00 

4.5 0.47 672.06 19.88 64.31 3.32 607.75 20.16 3771.60 116.60 260.64 4.61 1.82 1.36 
5.5 0.59 408.83 20.17 54.12 3.89 354.71 20.54 4359.00 123.10 142.78 4.23 1.65 1.50 

6.5 0.74 284.55 16.48 54.42 3.42 230.13 16.83 4773.70 127.90 69.52 2.89 2.39 1.26 

7.5 0.92 147.94 14.85 56.49 3.47 91.45 15.25 5052.40 131.90 30.99 2.27 0.00 0.00 

8.5 1.13 103.69 12.89 56.27 3.16 47.42 13.27 5187.90 135.30 24.00 1.92 0.00 0.00 

9.5 1.33 82.24 15.10 53.33 3.74 28.91 15.56 5264.70 138.30 19.12 2.15 0.00 0.00 

10.5 1.53 75.18 8.80 55.97 2.12 19.21 9.05 5311.80 141.20 17.62 1.25 0.00 0.00 
11.5 1.71 57.40 9.12 62.75 2.44 -5.35 9.44 5324.50 142.20 9.67 1.22 0.00 0.00 

12.5 1.89 72.59 15.02 49.78 3.85 22.81 15.51 5340.10 143.70 7.67 2.01 0.00 0.00 

14.5 2.28 56.90 7.29 56.90 2.10 0.00 7.59 5384.00 150.20 5.75 0.93 0.00 0.00 

16.5 2.72 56.28 6.54 53.28 1.68 3.00 6.75 5390.60 153.50 3.13 0.74 0.00 0.00 

18.5 3.17 63.22 7.83 61.96 2.06 1.26 8.10 5399.80 156.80 2.39 0.82 0.00 0.00 

20.5 3.57 58.18 8.23 64.86 2.20 -6.68 8.52 5389.10 160.40 1.83 0.97 0.00 0.00 
22.5 3.93 66.53 7.71 68.65 2.26 -2.12 8.03 5373.00 163.40 2.85 0.87 0.00 0.00 

24.5 4.35 65.08 10.62 64.77 2.74 0.31 10.97 5369.20 167.40 0.00 0.00 0.00 0.00 

26.5 4.72 64.40 8.40 61.07 2.11 3.33 8.66 5373.80 172.10 2.33 0.91 0.00 0.00 
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Appendix P - LOI550 (%), TN (%), TOC (%) and C/N ratio for Feeagh (inflow, deepest and 
outflow) and Guitane (deepest sediment core). 

 Feeagh  Guitane 

 Inflow Deepest Outflow  Deepest 

Depth LOI TN TOC C/N LOI TN TOC C/N LOI TN TOC C/N  LOI TN TOC C/N 
0-1 32.0 0.7 14.3 20.4 32.0 0.8 13.4 16.8 45.5 0.9 19.1 21.2  21.6 0.5 7 13.4 

1-2 24.6     30.1    31.7      20.2      
2-3       30.9           18.6      

3-4 28.9 0.9 17.9 19.6 37.0 1 18.5 19.2 36.3 1 19.6 19.1  18.0 0.6 7.8 13.9 

4-5       35.5           15.9      

5-6 26.0 0.7 14.3 21.7 38.9    41.1      13.6 0.6 6.1 13.4 

6-7       40.4           12.4      

7-8 31.3     37.9 1.1 21.9 19.9 39.1 0.9 19.2 21.5  11.4 0.4 5.1 13.9 
8-9       36.2           12.8      

9-10 35.3     37.7 1.1 21.3 20.3 39.8      17.3 0.5 8.7 16.2 

10-11       40.9           18.0      

11-12 31.8 0.8 17.2 21.8 45.2 1.2 24.1 20.2 43.7 1.2 25 20.6  18.6      

12-13       45.9           18.8      

13-14 28.5     47.6 1.3 27.1 20.4 38.3 1 20.1 20.9  18.4      
14-15       47.0           16.0      

15-16 27.0 0.8 16.1 21.5 46.8 1.2 24.4 20.3 34.6      12.9      

16-17       45.5           10.8 0.6 4.9 7.7 

17-18 23.0     45.7    33.6      11.4      

18-19       44.9           13.1      

19-20 23.8     43.9 1.3 25.8 19.7 27.7 0.8 17 20.7  13.8      
20-21       42.6           12.8      

21-22 21.0 0.6 13.1 21.4 40.7    26.2      14.7      

22-23       39.5           14.3      

23-24 17.0     40.7    25.5 0.7 13.6 19.7  15.2 1.0 8.5 8.6 

24-25       40.3           15.1      

25-26 16.2 0.4 8.4 21 36.8    24.1      15.4      
26-27       37.2           14.1      

27-28 16.9     36.9 1.1 20 19.2 22.4      12.8      

28-29       38.5           13.0      

29-30 17.1 0.4 8.8 20.7 36.8    21.0 0.6 10.4 18.5  15.3      

30-31       32.3           12.9      

31-32 15.0     30.8    20.6      13.8      
32-33       28.5           16.7      

33-34 17.5     28.5    20.9 0.5 9.6 19.4  17.3 1.2 10.1 8.2 

34-35       29.5           16.6      

35-36 16.6 0.4 7.7 21.1 26.9    20.0      18.5      

36-37       25.6           16.8      

37-38 19.9     24.6    19.8      16.1      
38-39       23.6           15.8      

39-40 18.1 0.4 8 23.1 26.8 0.8 15.5 20.1   0.6 11.6 20.8  16.0 1.4 10.7 7.9 

40-41              15.7      
41-42              15.9      

42-43              14.0      

43-44              14.9      
44-45              15.2      

45-46             

 

15.5      

46-47             13.3      

47-48             14.5      

48-49              12.9      

49-50              16.3      
50-51              15.2      

51-52              18.1 1.0 11.3 11 

52-53                           17.9       
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Appendix T – Relative abundance (%) of planktonic and benthic diatom taxa in surface 
sediment from the deepest waters and the sediment core collected for Illuminate Project (0-
61.5 cm). 
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Appendix V – Broken stick model (dark grey) and original data (clear grey) for diatom 
assemblages from the deepest core in Guitane.  

 

 

Appendix W - Taxon name and authorities for diatoms identified in Feeagh (traps and surface 
sediment) and Guitane (traps and sediment core). 

Taxon name Authority 
Achnanthes amoena Hustedt, 1952 

Achnanthes daui Foged, 1962 

Achnanthes didyma Hustedt, 1933 

Achnanthes impexiformis Lange-Bertalot in Lange-Bertalot & Krammer, 1989 

Achnanthes flexella (Kützing) Brun, 1880 

Achnanthes helvetica (Hustedt) Lange-Bertalot in Lange-Bertalot & Krammer, 1989 

Achnanthes laterostrata Hustedt, 1933 

Achnanthes laevis Oestrup, 1910 

Achnanthes lanceolata (Breb. ex. Küting.) Gruen in Cleve & Grunow, 1880 

Achnanthes oblongella Oestrup, 1902 

Achnanthes petersenii Hustedt, 1937 

Achnanthes pusilla (Grunow) De Toni, 1891 

Achnanthes pseudoswazi Carther, 1963 

Achnanthes saccula Carter in Carter & Bailey-Watts, 1981 

Achnanthes subatomoides 
(Hustedt) Lange-Bertalot & Archibald in Krammer & Lange-
Bertalot, 1985 

Achnanthes ventralis (Krasske) Lange-Bertalot in Lange-Bertalot & Krammer, 1989 

Achnanthidium minutissimum (Kützing) Czarnecki (sensu latu) 
Amphora libyca Ehrenberg, 1840 
Amphora veneta Kuetzing, 1844 

Asterionella formosa  Hassll, 1850 

Aulacoseira alpigena (Grunow) Krammer, 1990 

Aulacoseira subarctica (O. Mueller) Haworth, 1988 

Amphora veneta Kützing, 1844 

Brachysira garrensis  Lange-Bertalot & Krammer, 1985 

Brachysira neoexilis Lange-Bertalot, 1994 

Brachysira styriaca (Grunow) Hudstedt, 1930 

Brachysira vitrea (Grunow) Ross, 1966 

Caloneis molaris (Grunow) Krammer, 1985 

Cavinula cocconeiformis 
(Gregory ex Greville) Mann & Stickle in Round, Crawford & 
Mann 1990 

Cocconeis placentula  Ehrenberg, 1838 

Cyclotella comensis Grunow in Van Heurck, 1882 

Cyclotella kuetzingiana (Grunow) Hakansson, 1990 

Cyclotella menegheniana Kützing, 1844 

Cyclotella ocellata Patocsek, 1901 

Cyclotella radiosa  (Grunow) Lemmermann, 1900 

Cyclotella rossii Hakonsson, 1990 
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Cyclotella stelligera 
 

Cleve & Grunow in Cleve, 1881 

Appendix Y continues - Taxon name and authorities for diatoms identified in Feeagh (traps and 
surface sediment) and Guitane (traps and sediment core) 

Cymbella cistula 
 

(Ehrenberg) Kirchner, 1878 

Cymbella gracilis (Ehrenberg 1843) Kuetzing, 1844 

Cymbella helvetica Kützing, 1844 

Cymbella microcephala  Grunow in Van Heurck, 1880 

Cymbella silesiaca Bleisch in Rabenhorst, 1864 

Diatoma moniliformis  Kuetzing, 1833 

Diatoma tenue Agardh, 1812 
Diploneis oblongella (Naegeli) Cleve-Euler, 1922 

 Diploneis parma Cleve, 1891 

Epithemia adnata (Kützing) Rabenhorst, 1853 

Eunotia bilunaris (Ehrenberg) Mills, 1934 

Eunotia exigua (Brèbisson ex Kuetzing) Rabenhorst, 1864 

Eunotia implicata  Noerpel, Lange-Bertalot & Alles 1991 

Eunotia incisa Gregory, 1854 
Eunotia fallax 
 

A. Cleve, 1895 
 Eunotia glacialis 

 
Meister, 1912 
 Eunotia hexaglypha 

 
Ehrenberg, 1954 
 Eunotia paludosa 

 
Grunow, 1862 
 

Eunotia pectinalis Rabenhorst, 1864 
Eunotia praerupta 
 

Ehrenberg, 1843  
 

Eunotia rhomboidea Hustedt, 1850 
Fragilaria arcus 
 

(Ehrenberg) Cleve, 1898 
 

Fragilaria brevistriata Grunow in Van Heurck, 1885 

Fragilaria capucina var. rumpens (Kützing) Lange-Bertalot, 1991 

Fragilaria capucina var. vaucheriae (Kützing) Lange-Bertalot, 1980 

Fragilaria construens  (Ehrenberg) Hustedt, 1957 

Fragilaria exigua Grunow in Cleve & Moeller, 1878 

Fragilaria gracilis (Oestrup) Hustedt, 1950 

Fragilaris leptostauron var. martyi (Héribaud) Lange-Bertalot, 1991 
Fragilaria pinnata 
 

Ehrenberg, 1843 
 

Fragilaria tenera (W. Smith) Lange-Bertalot, 1980 

Fragilaria virescens Ralfs, 1843 

Frustulia rhomboides (Ehrenberg) De Toni, 1891 

Gomphonema acuminatum Ehrenberg, 1832 
Gomphonema angustum 
 

Agardh, 1831 
 

Gomphonema clavatum Ehrenberg, 1832 

Gomphonema gracile Ehrenberg, 1838 
Gomphonema hebridense 
 

Gregory, 1854 
 

Gomphonema minutum Agardgh, 1831 
Gomphonema olivaceoides 
 

Hustedt,   
Gomphonema truncatum 
 

Ehrenberg, 1832 
 

Gomphonema parvulum (Kützing) Kützing, 1849 

Gomphonema pumilum (Grunow) Reichardt & Lange-Bertalot, 1991 

Meridion circulare (Greville) Agardgh, 1831 
Navicula capitata 
 

Ehrenberg, 1838 
 

Navicula cari Ehrenberg, 1836 

Navicula cryptocephala Kuetzing, 1844 

Navicula cryptotenella Lange-Bertalot, 1985 

Navicula jarnefeltii Hutstedt, 1942 
Navicula leptostriata 
 

Joergensen, 1948 
 Navicula placentula (Ehrenberg) Kuetzing, 1844 
 Navicula pupula Kuetzing, 1844 
 Navicula pusilla W. Smith, 1853 

Navicula radiosa  Kuetzing, 1844 

Navicula rhynchocephala (Grunow) Grunow in Cleve & Moeller, 1877 

Navicula minima Grunow in Van Heurck, 1880 
Navicula reinhardtii 
 

(Grunow) Grunow in Cleve & Moeller, 1877 
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Appendix Y continues - Taxon name and authorities for diatoms identified in Feeagh (traps and 
surface sediment) and Guitane (traps and sediment core) 

Navicula porifera var. opportuna (Hustedt) Lange-Bertalot 1985 
Navicula subtilissima Cleve, 1891 

 Navicula tripunctata (O.F. Mueller) Bory, 1822 
 Navicula viridula (Kuetzing) Ehrenberg, 1838 
 Neidium ampliatum 

 
(Ehrenberg) Krammer, 1985 
 

Neidium ladegensis (Cleve) Foged, 1952 

Nitzschia angustata (Schmith) Grunow in Cleve & Grunow, 1880 

Nitzschia gracilis Hantzsch, 1860 

Nitzschia linearis (Agardh) W. Smith, 1853 

Nitzschia palea (Kützing) W. Smith, 1856 

Pinnularia appendiculata (Agardh) Cleve 1895 
Pinnularia divergens var. linearis 
 

Ehrenberg, 1841 
 

Pinnularia gibba var. linearis Ehrenberg, 1841 
Pinnularia intermedia 
 

(Lagerstedt) Cleve, 1895 
, Pinnularia microstauron (Ehrenberg) Cleve, 1891 

Pinnularia silvatica Hantzsch in Rabenhorst, 1861 

Pinnularia viridis (Nitzsch) Ehrenberg, 1843 

Reimeria sinuata (Gregory) Kociolek & Störmer, 1987 

Stauroneis anceps  Ehrenberg, 1843 
Surirella brebissonii 
 

Krammer & Lange-Bertalot, 1985 

Surirella linearis Smith, W. 1853 

Surirella brebissoni Krammer & Lange-Bertalot, 1987 

Synedra ulna  (Nitzsch) Ehrenberg, 1836 

Tabellaria flocculosa (Roth) Kützing, 1844 
Tetracyclus glans 
 

(Ehrenberg) Mills, 1935 
  


